欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (01): 49-56.doi: 10.3724/SP.J.1006.2015.00049

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦–中间偃麦草渗入系抗白粉病基因PmCH7124的分子定位

李建波1,乔麟轶1,2,*,李欣2,张晓军2,詹海仙2,郭慧娟2,任永康2,畅志坚2,*   

  1. 1山西大学研究生院, 山西太原 030006; 2山西省农业科学院作物科学研究所 / 农业部黄土高原作物基因资源与种质创制重点实验室, 山西太原030031
  • 收稿日期:2014-06-19 修回日期:2014-09-30 出版日期:2015-01-12 网络出版日期:2014-11-11
  • 通讯作者: 畅志坚, E-mail: wrczj@126.com; 乔麟轶, E-mail: qiaoly1988@126.com
  • 基金资助:

    本研究由国家自然科学基金项目(31171839), 山西省国际科技合作计划项目(2013081007)和山西省科技攻关项目(20130311001-5)资助。

Molecular Mapping of Powdery Mildew Resistance Gene PmCH7124 in a Putative Wheat–Thinopyrum intermedium Introgression Line

LI Jian-Bo1,QIAO Lin-Yi1,2,*,LI Xin2,ZHANG Xiao-Jun2,ZHAN Hai-Xian2,GUO Hui-Juan2,REN Yong-Kang2,CHANG Zhi-Jian2,*   

  1. 1 Graduate School of Shanxi University, Taiyuan 030006, China; 2Institute of Crop Science, Shanxi Academy of Agricultural Sciences / Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of Ministry of Agriculture, Taiyuan 030031, China
  • Received:2014-06-19 Revised:2014-09-30 Published:2015-01-12 Published online:2014-11-11
  • Contact: 畅志坚, E-mail: wrczj@126.com; 乔麟轶, E-mail: qiaoly1988@126.com

摘要:

 

小麦新种质CH7124由八倍体小偃麦TAI8335与高感白粉病小麦品种晋麦33杂交后代衍生而来,在苗期对白粉病菌株E09、E20、E21、E23、E26、Bg1和Bg2表现免疫或高抗,抗病表现与TAI8335及其野生亲本中间偃麦草相似。基因组原位杂交未检测到CH7124含有外源染色体信号。利用CH7124与感病亲本SY95-71和绵阳11的杂交群体接种鉴定和遗传分析证实,CH7124成株期对E09的抗性由1对显性核基因控制,暂命名为PmCH7124。采用分离群体分组分析法(bulked segregant analysis, BSA) 对SY95-71/CH7124的F6群体进行SSR标记扫描,发现抗性基因PmCH7124与5对SSR标记连锁,与两翼邻近标记Xgwm501Xbarc101的遗传距离分别为1.7 cM和4.5 cM。利用中国春缺体–四体和双端体材料,将PmCH7124及其连锁标记定位在小麦2B染色体长臂上。通过分析2BL上其他抗白粉病基因的抗谱、抗性来源、物理图谱位置以及连锁标记在PmCH7124作图群体中的多态性,认为PmCH7124不同于2BL上已知的抗白粉病基因Pm6Pm33PmJM22MlZec1MlAB10MlLX99

关键词: 小麦–中间偃麦草渗入系, 白粉病抗性, GISH, SSR标记, 连锁图谱

Abstract:

Wheat introgression line CH7124 derived from a cross between wheat-Thinopyrum intermedium line TAI8335 (resistant to powdery mildew) and common wheat variety “Jinmai 33” (susceptible to powdery mildew) exhibits immunity to Blumeria graminis f. sp. tritici (Bgt) pathotypes E09, E20, E21, E23, E26, Bg1, and Bg2 at the seedling stage. The Bgt resistance in CH7124 is similar to that in TAI8335 and its wild parent Th. intermedium. However, no Th. intermedium chromatinhas been detected according to genome in situ hybridization (GISH) assay. In this study, we determined the single dominant Bgt resistance gene in CH7124, tentatively designated PmCH7124, using populations derived from SY95-71/CH7124 (F6) and CH7124/Mianyang 11 (F1 and F2). Five SSR markers (Xgwm47, Xgwm120, Xwmc332, Xgwm501, and Xbarc101) were identified to be codominant with PmCH7124 according to bulked segregant analysis, and the closely flanking markers were Xgwm501 and Xbacr101 with genetic distances of 1.7 cM and 4.5 cM, respectively. The target resistance gene was chromosomally located on 2BL with Chinese Spring nulli-tetrasomicand ditelosomic lines. We primarily consider that PmCH7124 is a new Bgt resistance gene because its resistance spectrum, origin, chromosomal location, and linked markers are different from those of the known Bgt resistance genes, such as Pm6, Pm33, PmJM22, MlZec1, MlAB10, and MlLX99

Key words: Wheat–Th. intermedium introgression line, Resistance to powdery mildew, GISH, SSR markers, Linkage map

[1]Line R F, Chen X M. Success in breeding for and managing durable resistance to wheat rusts. Plant Dis, 1995, 79: 125−1255

[2]Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L. Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet, 2013, 54: 259−263

[3]Tao W, Liu D, Liu J, Feng Y, Chen P. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor Appl Genet, 2000, 100: 564−568

[4]Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. Microsatellite markers linked to two powdery mildew resistance gene introgressed from Triticum carthlicum accession PS5 into common wheat. Genome, 2005, 48: 585−590

[5]殷贵鸿, 李根英, 何中虎, 刘建军, 王辉, 夏先春. 小麦新品种济麦22抗白粉病基因的分子标记定位.作物学报, 2009, 35: 1425−1431

Yin G H, Li G Y, He Z H, Liu J J, Wang H, Xia X C. Molecular mapping of powdery mildew resistance gene in wheat cultivar Jimai 22. Acta Agron Sin, 2009, 35: 1425−1431 (in Chinese with English abstract)

[6]Mohler V, Zeller F J, Wenzel G, Hsam S L K. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.): 9. Gene MlZec1 from Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica, 2005, 142: 161−167

[7]Maxwell J J, Lyerly J H, Srnic G, Parks R, Cowger C, Marshall D, Brown-Guedira G, Murphy J P. MlAB10: a Triticum turgidum subsp. dicoccoides derived powdery mildew resistance gene identified in common wheat. Crop Sci, 2010, 50: 2261−2267

[8]Zhao Z H, Sun H G, Song W, Lu M, Huang J, Wu L F, Wang X M, Li H J. Genetic analysis and detection of the gene MlLX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet, 2013, 126: 3081−3089

[9]Huang X Q, Hsam S L K, Zeller F J. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.): IX. Cultivars, landracesand breeding lines grown in China.Plant Breed, 1997, 116: 233−238

[10]Li H J, Wang X M. Thinopyrumponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics, 2009, 36: 557−565

[11]Liu S B, Wang H G. Characterization of a wheat-Thinopyron intermedium substitution line with resistance to powdery mildew. Euphytica, 2005, 143: 229−233

[12]李欣, 张晓军, 张丛卓,詹海仙, 杨足君, 畅志坚. 兼抗白粉、条锈病小偃麦渗入系 CH7124抗性遗传及细胞学鉴定. 植物遗传资源学报, 2012, 13: 577−582

Li X, Zhang X J, Zhang C Z, Zhan H X, Yang Z J, Chang Z J. Cytological characterization and resistance inheritance in alien introgression CH7124 from Thinopyrum intermedium. J Plant Genet Resour, 2012, 13: 577−582 (in Chinese with English abstract)

[13]Luo P, Luo H, Chang Z, Zhang H, Zhang M, Ren Z. Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet, 2009, 118: 1059−1064

[14]He R, Chang Z, Yang Z, Liu Z, Zhan H, Zhang X, Liu J. Inheritance and mapping of a powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet, 2009, 118: 1173−1180

[15]孙翠花, 侯丽媛, 郭慧娟, 张晓军, 贾举庆, 李欣, 詹海仙, 畅志坚.小麦–中间偃麦草隐形渗入系抗白粉病基因pmCH83的分子定位. 作物学报, 2013, 39: 2107−2114

Sun C H, Hou L Y, Guo H J, Zhang X J, Jia J Q, Li X, Zhan H X, Chang Z J. Molecular mapping of powdery mildew resistance gene pmCH83 in a putative wheat–Thinopyrum intermedium cryptic introgression line. Acta Agron Sin, 2013, 39: 2107−2114 (in Chinese with English abstract)

[16]Chang Z, Zhang X, Yang Z, Zhan H, Li X, Liu C, Zhang C. Characterization of a partial wheat-Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010, 147: 304−312

[17]盛宝钦. 用反应型记载小麦苗期白粉病. 植物保护, 1988, 14(1): 49

Sheng B Q. Using infection type records the wheat powdery mildew at seedling stage. Plant Prot, 1988, 14(1): 49 (in Chinese)

[18]盛宝钦, 段霞瑜. 用反应型记载小麦成株白粉病"0~9级法"的改进. 北京农业科学, 1991, 9(1): 37−39

Sheng B Q, Duan X Y. Modification on the evaluation methods of 0–9 level of powdery mildew infection on wheat. Beijing Agric Sci, 1991, 9(1): 37−39 (in Chinese)

[19]Somers D J, Isaac P, Edwards K. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105−1114

[20]Qin B, Cao A Z, Wang H Y, Chen T T, Frank M, Liu Y Y, Ji J H, Liu D J, Chen P D, Wang X E. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet, 2011, 123: 207−218

[21]Wang Z L, Li L H, He Z H, Duan X Y, Zhou Y L, Chen X M, Lillemo M, Singh R P, Wang H, Xia X C. Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis, 2005, 89: 457−463

[22]Zhang X Y, Koul A, Petroski R, Ouellet T, Fedak G, Dong Y S, Wang R R C. Molecular verification and characterization of BYDV-resistant germplasms derived from hybrids of wheat with Thinopyrum ponticum and Th. intermedium. TheorAppl Genet, 1996, 93: 1033−1039

[23]Chen Q, Conner R L, Laroche A, Ahmad F. Molecular cytogenetic evidence for a high level of chromosome pairing among different genomes in Triticum aestivum–Thinopyrum intermedium hybrids. Theor Appl Genet, 2001, 102: 847−852

[24]张学勇, 董玉琛, 杨欣明. 小麦与长穗偃麦草、中间偃麦草杂种及其衍生后代的细胞遗传学研究: III. 小麦和偃麦草基因重组的遗传基础浅析. 遗传学报, 1995, 22: 217−222

Zhang X Y, Dong Y C, Yang X M. Cytogenetic research on hybrids of Triticum with both Thinopyrum ponticum and Th. intermedium as well as their derivatives: III. Primary detection of genetic base for introgression of useful genes from the two alien species to wheat. Acta Genet Sin, 1995, 22: 217−222 (in Chinese with English abstract)

[25]Dong Y S, Bu X L, Luan Y S, He M Y, Liu B. Molecular characterization of a cryptic wheat-Thinopyrum intermedium translocation line: evidence for genomic instability in nascent allopolyploid and aneuploid lines. Genet Mol Biol, 2004, 27: 237−241

[26]Kuraparthy V, Sood S, Chhuneja P, Dhaliwal H S, Kaur S, Bowder R L, Gill B S. A cryptic wheat–Aegilop striuncialis translocation with leaf rust resistance gene Lr58. Crop Sci, 2007, 47: 1995−2003

[27]Kuraparthy V, Chhuneja P, Dhaliwal H S, Kaur S, Bowder R L, Gill B S. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with novel leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet, 2007, 114: 1379−1389

[28]宋凤景, 肖明纲, 黄江, 王晓鸣, 朱振东, 武小菲. 李洪杰. 12个小麦品种(系)白粉病抗性的遗传分析. 作物学报, 2012, 38: 1339−1345

Song F J, Xiao M G, Huang J, Wang X M, Zhu Z D, Wu X F, Li H J. Inheritance of resistance to powdery mildew in 12 wheat varieties (lines). Acta Agron Sin, 2012, 38: 1339−1345 (in Chinese with English abstract)
[1] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[2] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[3] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[4] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[5] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[6] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[7] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[8] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[9] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[10] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[11] 刘天鹏,董孔军,董喜存,何继红,刘敏轩,任瑞玉,张磊,杨天育. 12C6+离子束辐照糜子诱变突变群体的构建与SSR分析[J]. 作物学报, 2018, 44(01): 144-156.
[12] 王建花,张耀文,程须珍,王丽侠. 绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析[J]. 作物学报, 2017, 43(07): 1096-1102.
[13] 亓晓蕾,鲍印广,李兴锋,钱兆国,王瑞霞,吴科,王洪刚. 十个八倍体小偃麦的细胞学鉴定和染色体构成分析[J]. 作物学报, 2017, 43(07): 967-973.
[14] 刘畅,李仕金,王轲,叶兴国,林志珊. 簇毛麦6VS特异转录序列P21461P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用[J]. 作物学报, 2017, 43(07): 983-992.
[15] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!