作物学报 ›› 2015, Vol. 41 ›› Issue (01): 57-65.doi: 10.3724/SP.J.1006.2015.00057
温娟1,许剑锋1,龙艳2,徐海明1,孟金陵2,吴建国3,*,石春海1,*
WEN Juan1, XU Jian-Feng1, LONG Yan2, XU Hai-Ming1, MENG Jin-Ling2, WU Jian-Guo3,*,SHI Chun-Hai1,*
摘要:
菜籽饼是重要的饲料蛋白质来源,氨基酸组成与饲料营养品质有着密切关系,其中丝氨酸、胱氨酸和酪氨酸为多数动物的半必需氨基酸。本研究利用甘蓝型油菜双单倍体(DH)群体分别与双亲Tapidor和Ningyou 7回交构建的2套BC1F1群体,采用新创建的双子叶作物种子品质性状遗传体系QTL定位软件和作图方法,对油菜籽丝氨酸、胱氨酸和酪氨酸含量进行了种子胚和母体植株2套遗传体系的QTL定位分析。结果表明,在A1、A4、A7、A8、A9、C2、C3和C9染色体上检测到5个丝氨酸含量QTL、2个胱氨酸含量QTL和5个酪氨酸含量QTL,分别能解释59.34%、29.66%和59.26%的表型变异。其中5个QTL属于主效QTL,均能解释10%以上的表型变异。全部QTL均具极显著的胚和母体加性主效应,其中3个QTL具显著或极显著的环境互作效应。在A4染色体上发现1个QTL簇,该区域存在3个控制丝氨酸、胱氨酸和酪氨酸含量的QTL。一些重要QTL以及与之紧密连锁的分子标记在今后图位克隆和分子标记辅助选择育种中具有重要的利用价值。
[1]王绍中, 李春喜, 罗艳蕊, 姜丽娜. 基因型和地域分布对小麦籽粒氨基酸含量影响的研究. 西北植物学报, 2001, 21: 437–445Wang S Z, Li C X, Luo Y R, Jiang L N. Investigation on effects for genotypes and region distribution to the grain amino acid contents of winter wheat. Acta Bot Boreal-Occident Sin, 2001, 21: 437–445 (in Chinese with English abstract)[2]Muncka L, Pram N J, Moller B, Jacobsen S, Sondergaard I, Engelsen S B, Norgaard L, Broa R. Exploring the phenotypic expression of a regulatory proteome-altering gene by spectroscopy and chemometrics. Analytica Chimica Acta, 2001, 446: 171–186[3]Bell J M, Rakow G, Downey R K. Comparisons of amino acid and protein levels in oil-extraeted seeds of Brassica and Sinapis species, with observations on environmental effects. Can J Anim Sci, 2000, 80: 169–174[4]任玉玲, 石春海, 吴建国, 张海珍. 油菜籽三种氨基酸含量的胚、细胞质和母体遗传效应分析. 浙江大学学报(农业与生命科学版), 2005, 31: 41–46Ren Y L, Shi C H, Wu J G, Zhang H Z. Genetic analysis of embryo, cytoplasmic and maternal effects on three amino acid traits in rapeseed. J Zhejiang Univ (Agric Life Sci), 2005, 31: 41–46 (in Chinese with English abstract)[5]Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA, 1993, 90: 10972–10976[6]Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994, 136: 1447–1455[7]Zhu J, Weir B S, Chen L S. Mixed Model Approaches for Genetic Analysis of Quantitative Traits. In: Proceedings of the International Conference on Mathematical Biology. Singapore: World Scientific Publishing Co., 1998. pp 321–330[8]Shi C H, Shi Y, Lou X Y, Xu H M, Zheng X, Wu J G. Identification of endosperm and maternal plant QTLs for protein and lysine contents of rice across different environments. Crop Pasture Sci, 2009, 60: 295–301[9]Panthee D R, Pantalone V R, Sams C E, Saxton A M, West D R, Orf J H, Killam A S. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor Appl Genet, 2006, 112: 546–553[10]Jiang X L, Deng Z Y, Ru Z G, Wu P, Tian J C. Quantitative trait loci controlling amino acid contents in wheat (Triticum aestivum L.). Aust J Crop Sci, 2013, 7: 820–829[11]Liu H Y, Quampah A, Chen J H, Li J R, Huang Z R, He Q L, Zhu S J, Shi C H. QTL Mapping based on different genetic systems for essential amino acid contents in cottonseeds in different environments. PLoS One, 2013, 8: e57531[12]Xu J F, Long Y, Wu J G, Xu H M, Wen J, Meng J L, Shi C H. QTL mapping and analysis of the embryo and maternal plant for three limiting amino acids in rapeseed meal. Eur Food Res Technol, 2014[13]Zhang H Z, Shi C H, Wu J G, Ren Y L, Li C T, Zhang D Q, Zhang Y F. Analysis of genetic and genotype × environment interaction effects from embryo, cytoplasm and maternal plant for oleic acid content of Brassica napus L. Plant Sci, 2004, 167: 43–48[14]Wu J G, Shi C H, Zhang H Z. Genetic analysis of embryo, cytoplasmic and maternal effects and their environment interactions for protein content in Brassica napus L. Aust J Agr Res, 2005, 56: 69–73[15]Variath M T, Wu J, Zhang L, Shi C H. Analysis of developmental genetic effects from embryo, cytoplasm and maternal plant for oleic and linoleic acid contents of rapeseed. J Agric Sci, 2010, 148: 375–391[16]Yang J, Zhu J, Williams R W. Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics, 2007, 23: 1527–1536[17]郑希, 吴建国, 楼向阳, 徐海明, 石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析. 作物学报, 2008, 34: 369–375Zheng X, Wu J G, Lou X Y, Xu H M, Shi C H. Mapping and analysis of QTLs on maternal and endosperm genomes for histidine and arginine in rice (Oryza Sativa L.) across environments. Acta Agron Sin, 2008, 34: 369–375 (in Chinese with English abstract)[18]Liu H Y, Quampah A, Chen J H, Li J R, Huang Z R, He Q L, Shi C H, Zhu S J. QTL analysis for gossypol and protein contents in upland cottonseeds with two different genetic systems across environments. Euphytica, 2012, 188: 453–463[19]Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114: 67–80[20]Chen G L, Zhang B, Wu J G, Shi C H. Nondestructive assessment of amino acid composition in rapeseed meal based on intact seeds by near-infrared reflectance spectroscopy. Anim Feed Sci Tech, 2011, 165: 111–119[21]Shi J Q, Li R L, Qiu D, Jiang C C, Long Y, Morgan C, Bancroft I, Zhao J Y, Meng J L. Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genet, 2009, 182: 851–861[22]McCouch S R, Cho Y G, Yano P E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11–13[23]Falconer D S, Mackay T F C. Introduction to Quantitative Genetics. 4th Edn. UK: Longmans Green, Harlow, Essex, 1996[24]Paterson A H, Lander E S, Hewitt J D, Peterson S, Lincoln S E, Tanksley S D. Resolution of quantitative traits into Mendelian factors using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721–726[25]Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 27: 205–233[26]Subhadra S, Mohapatra T, Rakesh S, Hussain Z. Mapping of QTLs for oil content and fatty acid composition in Indian mustard [Brassica juncea (L.) Czern. and Coss.]. J Plant Biochem Biot, 2013, 22: 80–89[27]Mahmood T, Rahman M H, Stringam G R, Yeh F, Good A G. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet, 2006, 113: 1211–1220[28]梅德圣, 张垚, 李云昌, 胡琼, 李英德, 徐育松. 油菜油分、蛋白质和硫苷含量相关性分析及 QTL定位. 植物学报, 2009, 44: 536–545Mei D S, Zhang Y, Li Y C, Hu Q, Li Y D, Xu Y S. Identification of quantitative trait loci for oil, protein and glucosinolate content in Brassica napus. Chin Bull Bot, 2009, 44: 536–545 (in Chinese with English abstract)[29]Zhang J F, Qi C K, Pu H M, Chen S, Chen F, Gao J Q, Chen X J, Gu H, Fu S Z. QTL identification for fatty acid content in rapeseed (Brassica napus L.). Acta Agron Sin, 2008, 34: 54–60[30]Yan X Y, Li J N, Wang R, Jin M Y, Chen L, Qian W, Wang X N, Liu L Z, Mapping of QTLs controlling content of fatty acid composition in rapeseed (Brassica napus). Genes Genom, 2011, 33: 365–371 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303. |
[9] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[10] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[11] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[12] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[13] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[14] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
[15] | 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637. |
|