欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 207-213.doi: 10.3724/SP.J.1006.2015.00207

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦–华山新麦草异代换系DH2322的分子细胞遗传学鉴定

王秀娟,陈新宏,庞玉辉,敬樊,张军,胡思远,昝凯,武军,杨群慧,赵继新*   

  1. 西北农林科技大学农学院,陕西杨凌 712100
  • 收稿日期:2014-06-09 修回日期:2014-12-19 出版日期:2015-02-12 网络出版日期:2014-12-29
  • 通讯作者: 赵继新, E-mail: zhjx881@163.com
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)项目(2013-Z28), 陕西省自然科学基础研究计划重点项目(2013JZ007)和西北农林科技大学唐仲英育种基金资助。

Molecular Cytogenetic Characterization of Triticum–Psathyrostachys Substitution Line DH2322

WANG Xiu-Juan,CHEN Xin-Hong,PANG Yu-Hui,JING Fan,ZHANG Jun,HU Si-Yuan,ZAN Kai,WU Jun,YANG Qun-Hui,ZHAO Ji-Xin *   

  1. College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
  • Received:2014-06-09 Revised:2014-12-19 Published:2015-02-12 Published online:2014-12-29
  • Contact: 赵继新, E-mail: zhjx881@163.com

摘要:

利用分子标记、细胞学、基因组原位杂交(GISH)等技术,结合田间农艺性状调察,对小麦–华山新麦草七倍体材料H8911与硬粒小麦D4286杂交F4代分离群体中杂交后代DH2322进行了综合鉴定。华山新麦草基因组特异SCAR标记鉴定表明,DH2322含有华山新麦草特异遗传物质;细胞遗传学观察显示,DH2322染色体构型为2n=42=21 II;有丝分裂和花粉母细胞减数分裂中期I基因组原位杂交(GISH)鉴定表明,DH2322的染色体由40条小麦染色体和2条华山新麦草Ns染色体构成,且两条Ns染色体能完全配对为一个二价体;SSR和STS分子标记分析表明,DH2322缺失了小麦D基因组的2D染色体,而含有华山新麦草的2Ns染色体;农艺性状调查分析表明,DH2322具有双亲的形态学特征,结实性好,穗长和穗粒数显著大于亲本。

关键词: 小麦, 华山新麦草, 异代换系, SCAR, 基因组原位杂交(GISH), SSR, STS

Abstract:

A wheat–P. huashanica alien substitution line DH2322 was isolated from the F4 progeny of heptaploid hybrid H8911 × Triticum durum cv. D4286 and identified by using SCAR markers, genomic in situ hybridization (GISH) , SSR markers, and STS markers. The rusults using SCAR marker RHS141 showeded that DH2322 carrys chromosome derived from P. huashanica. Cytogenetic observation indicated that DH2322 has a chromosome karyotype of 2n = 42 = 21 II. GISH showed that DH2322 is a line with 40 chromosomes from wheat and two Ns chromosomes from P. huashanica, which formed a ring bivalent in PMC at metaphase I. Analysis with SSR and STS primers showed that the wheat chrom osome 2D in DH2322 was substituted by the chromosome 2Ns from P. huashanica. Evaluation of the agronomic traits showed that DH2322 presented favorable agronomic traits in spike length and kernels per spike. Development of this new germplasm will be useful for wheat breeding programs in the future.

Key words: Triticum aestivum, Psathyrostachys huashanica, Alien substitution line, SCAR, GISH, SSR, STS

[1]陈漱阳, 张安静, 傅杰. 普通小麦与华山新麦草的杂交. 遗传学报, 1991, 18: 508–512

Chen S Y, Zhang A J, Fu J. The hybridization between Triticum aestivum and Psathyrostachys huashanica. Acta Genet Sin, 1991, 18: 508–512 (in Chinese with English abstract)

[2]Baden C. A taxonomic revision of Psathyrostachys (Poaceae). Nordic J Bot, 1991, 11: 3–26

[3]Kang H Y, Zhang H Q, Fan X, Zhou Y H. Morphological and cytogenetic studies on the hybrid between bread wheat and Psathyrostachys huashanica Keng ex Kuo. Euphytica, 2008, 162: 441–448

[4]Kang H Y, Chen Q, Wang Y, Zhong M Y, Zhang H Q, Zhou Y H. Molecular cytogenetic characterization of the amphiploid between bread wheat and Psathyrostachys huashanica. Genet Resour Crop Evol, 2010, 57: 111–118

[5]Wang Y, Yu K, Xie Q, Kang H Y, Lin L, Fan X, Sha L N, Zhang H Q, Zhou Y K. The 3Ns chromosome of psathyrostachys huashanica carries the gene(s) underlying wheat stripe rust resistance. Cytogenetic Genome Res, 2011, 134: 136–143

[6]Kang H Y, Wang Y, Fedak G, Cao W G, Zhang H Q, Fan X, Sha L N, Xu L L, Zheng Y L, Zhou Y K. Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PloS One, 2011, 6: e21802

[7]Liu W X, Liu W H, Wu J, Gao A N, Li L H. Analysis of genetic diversity in natural populations of Psathyrostachys huashanica Keng using microsatellite (SSR) markers. Agric Sci China, 2010, 9: 463–471

[8]Wang L, Guo J, Zhao G F. Genetic diversity of the endangered and endemic species Psathyrostachys huashanica natural populations using simple sequence repeats (SSRs) markers. Biochem Syst Ecol, 2006, 34: 310-318

[9]侯文胜, 张安静, 杨群慧, 傅杰, 陈漱阳. 普通小麦–华山新麦草异代换系的选育及细胞遗传学研究. 西北植物学报, 1997, 17: 368–373

Hou W S, Zhang A J, Yang Q H, Fu J, Chen S Y. Breeding and cytogenetic study of Triticum aestivum–psathyrostachys huashaica alien substitution lines. Acta Bot Boreali-Occident Sin, 1997, 17: 368–373 (in Chinese with English abstract)

[10]傅杰, 王美南, 赵继新, 陈漱阳, 侯文胜, 杨群慧. 抗全蚀病小麦-华山新麦草中间材料H8911的细胞遗传学研究与利用.西北植物学报, 2003, 12: 2157–2162

Fu J, Wang M N, Zhao J X, Chen S Y, Hou W S, Yang Q H. Studies on cytogenetic and utilization of wheat–Psathyrostachys huashanica medium material H8911 with resistance to wheat take-all fungus. Acta Bot Boreali-Occident Sin. 2003, 12: 2157–2162 (in Chinese with English abstract)

[11]赵继新, 陈新宏, 王小利, 武军, 傅杰, 何蓓如, 孙志刚. 普通小麦-华山新麦草异附加系的分子细胞遗传学研究. 西北农林科技大学学报(自然科学版), 2004, 32: 105–108

Zhao J X, Chen X H, Wang X L, Wu J, Fu J, He B R, Sun Z G. Molecular cytogenetic study on the alien addition lines of Triticum-Psathyrostachys. J Northwest Sci-Tech Univ Agric For (Nat Sci Edn), 2004, 32: 105–108 (in Chinese with English abstract)

[12]赵继新, 陈新宏, 王小利, 武军, 傅杰, 何蓓如, 孙晓娟. 普通小麦-华山新麦草异代换系的分子细胞遗传学研究. 西北植物学报, 2004, 24: 2277–2281

Zhao J X, Chen X H, Wang X L, Wu J, Fu J, He B R, Sun X J. Molecular cytogenetic study on the alien substitution lines of Triticum-Psathyrostachys. Acta Bot Boreali-Occident Sin, 2004, 24: 2277–2281 (in Chinese with English abstract)

[13]Zhao J X, Ji W Q, Wu J, Chen X H, Cheng X N, Wang J W, Pang Y H, Liu S H, Yang Q H. Development and identification of a wheat-Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genet Resour Crop Evol, 2010, 57: 387–394

[14]武军, 马琳, 赵继新, 陈新宏, 刘淑会, 杨群慧. 普通小麦–华山新麦草矮秆种质B62的分子细胞学鉴定. 西北农林科技大学学报(自然科学版), 2010, 38: 123–127

Wu J, Ma L, Zhao J X, Chen X H, Liu S H, Yang Q H. Molecular cytology on a dwarf germplasm derived from Triticum aesticum × Psathyrostachys huashanica. J Northwest A&F Univ (Nat Sci Edn), 2010, 38: 123–127 (in Chinese with English abstract)

[15]Du W L, Wang J, Wang L M, Wu J, Zhao J X, Liu S H, Yang Q H, Chen X H. Molecular characterization of a wheat-Psathyrostachys huashanica Keng 2Ns disomic addition line with resistance to stripe rust. Mol Genet Genomics, 2014, 239: 1-9

[16]Du W L, Wang J, Pang Y H, Wang L M, Wu J, Zhao J X, Yang Q H, Chen X H. Isolation and characterization of a wheat-Psathyrostachys huashanica Keng 3Ns disomic addition line with resistance to stripe rust. Genome, 2014, 57: 37–44

[17]Du W L, Wang J, Lu M, Sun S G, Chen X H, Zhao J X, Yang Q H, Wu J. Characterization of a wheat-Psathyrostachys huashanica Keng 4Ns disomic addition line for enhanced tiller numbers and stripe rust resistance. Planta, 2014, 239: 97–105

[18]Du W L, Wang J, Lu M, Sun S G, Chen X H, Zhao J X, Yang Q H, Wu J. Molecular cytogenetic identification of a wheat-Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Mol Breed, 2013, 31: 879–888

[19]Du W L, Wang J, Pang Y H, Li Y L, Chen X H, Zhao J X, Yang Q H,Wu J. Isolation and characterization of a Psathyrostachys huashanica Keng 6Ns chromosome addition in common wheat. PloS One, 2013, 8: e53921

[20]Du W L, Wang J, Wang L M, Zhang J, Chen X H, Zhao J X, Yang Q H, Wu J. Development and Characterization of a Psathyrostachys huashanica Keng 7Ns Chromosome Addition Line with Leaf Rust Resistance. PloS One, 2013, 8: e70879

[21]王秀娟, 赵继新, 庞玉辉, 孙树贵, 张军, 鲁敏, 王亮明, 武军, 杨群慧, 陈新宏. 小麦–华山新麦草7Ns异附加系的分子细胞遗传学研究. 麦类作物学报, 2014, 34: 454–459

Wang X J, Zhao J X, Pang Y H, Sun S G, Zhang J, Lu M, Wang L M, Wu J, Yang Q H, Chen X H. Molecular and cytogenetic characterization of a Triticum-Psathyrostachys 7Ns addition line. J Triticeae Crops, 2014, 34: 454–459 (in Chinese with English abstract)

[22]Cota-sánchez J H, Remarchuk K, Ubayasena K. Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Rep, 2006, 24: 161–167

[23]Du W L, Wang J, Wang L M, Pang Y H, Wu J, Zhao J X, Yang Q H, Chen X H. A novel SCAR marker for detecting Psathyrostachys huashanica Keng chromatin introduced in wheat. Genet Mol Res, 2013, 12: 4797–4806

[24]Han F P, Liu B, Fedak G, Liu Z. Genomic constitution and variation in five partial amphiploids of wheat–Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004, 109: 1070–1076

[25]R?der M S, R?der M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023

[26]Pestsova E, Ganal M W, R?der M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689–697

[27]Cao Z J, Deng Z Y, Wang M N, Wang X P, Jing J X, Zhang X Q, Shang H S, Li Z Q. Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat-Psathyrostachys huashanica translocation line. Plant Sci, 174: 544–549

[28]Zhang X Y. Production and utilization of wheat alien translocation lines. Hereditas, 1991, 13: 39–44

[29]Peil A, Korzun V, Schubert V, Schumann E, Weber W E, R?der M S. The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor Appl Genet, 1998, 96: 138–146

[30]Gupta P K, Balyan H S, Edwards K J, Isaac P, Korzun V, R?der M, Gautier M F, Joudrier P, Schlatter A R, Dubcovsky J, De la Pena R C, Khairallah M, Penner G, Hayden M J, Sharp P, Keller B, Wang R C C, Hardouin J P, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet, 2002, 105: 413–422

[31]Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, 95: 1971–1974

[32]Chen Q, Conner R L, Laroche. A molecular characterization of haynaldiy villosa chromation in wheat lines carrying resistance to wheat curl mite colonization. Theor Appl Genet, 1996, 93: 679–684

[33]Lee J H, Kaeppler S M, Graybosch R A, Sears R G. A PCR assay for detection of a 2RL. 2BS wheat-rye chromosome translocation. Genome, 1996, 39: 605–608

[34]Koebner R. Generation of PCR-based markers for the detection of rye chromatin in a wheat background. Theor Appl Genet, 1995, 90: 740–745

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[5] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!