作物学报 ›› 2015, Vol. 41 ›› Issue (06): 956-962.doi: 10.3724/SP.J.1006.2015.00956
徐根娣1,2,葛淑芳1,2,章艺3,吴玉环4,梅笑漫5,刘鹏1,2,*
XU Gen-Di1,2,GE Shu-Fang1,2,ZAHNG Yi3,WU Yu-Huang4,MEI Xiao-Man5,LIU Peng1,2,*
摘要:
以耐Cu性较强的烟草品种W38 (Nicotiana tabacum cv. W38)和耐Cu性较弱的本氏烟(Nicotiana benthamiana)为试验材料,设置水培处理组即CK (Cu2+ 0 mg L–1,SA 0 μmol L–1,即对照组)、T1(Cu2+ 4 mg L–1,SA 0 μmol L–1)、T2 (Cu2+ 4 mg L–1,SA 100 μmol L–1)、T3 (Cu2+ 4 mg L–1,SA 300 μmol L–1)、T4 (Cu2+ 4 mg L–1,SA 500 μmol L–1),探讨SA对烟草生长特性及根、茎、叶不同器官中元素吸收规律的影响。结果表明,经过4 mg L–1 Cu胁迫15 d后,2个品种的烟草生长均受到一定程度的抑制,不同器官中Cu含量均显著升高,K、Ca、Mg、Fe、Zn、B、Mn的吸收受到抑制,而在营养液中添加适宜浓度的SA能够有效缓解Cu胁迫对2个品种烟草根长、株高、鲜重的抑制作用,并降低烟草体内Cu含量。与T1处理组相比,本氏烟的根、茎、叶中Cu含量最大分别下降25.05%、39.78%和22.91%,W38的根、茎、叶中的Cu含量最大分别下降23.27%、37.30%和28.88%,并促进了营养元素K、Ca、Mg、Fe、Mn的吸收,但是对Zn、B元素的吸收影响并不明显。由此可知,高浓度的Cu胁迫会抑制烟草的生长及营养元素的吸收和运输,施加适宜浓度的外源水杨酸有利于营养元素的吸收和促进烟草的生长发育,在本试验浓度范围内施加300 μmol L–1 的水杨酸可显著缓解Cu胁迫对烟草的抑制作用。
[1]Poll E A, Schzendbel A. Hevey metals ignaling in plants: linking celluar and organismic responses. Cur Gen, 2003, 4: 187–202[2]高培培, 章艺, 吴玉环, 徐根娣, 刘鹏. 外源水杨酸对铝胁迫下栝楼光合特性及耐铝性的影响. 水土保持学报, 2012, 26(6): 268–273Gao P P, Zhang Y, Wu Y H, Xu G D, Liu P. Effect of exogenous SA on photosynthesis and Al tolerance of Trichosanthes kirilowii Maxim under aluminum stress. J Soil Water Con, 2012, 26(6): 268–273 (in Chinese with English abstract)[3]张营, 李法云, 严霞. 外源K+和水杨酸在缓解融雪剂对油松幼苗生长抑制中的效应与机理. 生态学报, 2012, 32: 4300–4308Zhang Y, Li F Y, Yan X. Alleviation effect and mechanism of exogenous potassium nitrate and salicylic acid on the growth inhibition of Pinus tabulaeformis seedlings induced by deicing salts. Acta Ecol Sin, 2012, 32: 4300–4308 (in Chinese with English abstract)[4]Hayat Q, Hayat S, Irfan M. Effect of exogenous salicylic acid under changing environment. Environ Exp Bot, 2010, 68(1): 14–25[5]郝敬虹, 易旸, 尚庆茂, 董春娟, 张志刚. 干旱胁迫下外源水杨酸对黄瓜幼苗膜脂过氧化和光合特性的影响. 应用生态学报, 2012, 23: 717–723Hao J H, Yi Y, Shang Q M, Dong C J, Zhang Z G. Effects of exogenous salicylic acid on membrane lipid peroxidation and photosynthetic characteristics of Cucumis sativus seedlings under drought stress. Chin J Appl Ecol, 2012, 23: 717–723 (in Chinese with English abstract)[6]易小林, 杨丙贤, 宗学凤, 李名扬. 信号分子水杨酸减缓干旱胁迫对紫御谷光合和膜脂过氧化的副效应. 生态学报, 2011, 31(1): 67–74Yi X L, Yang B X, Zong X F, Li M Y. Signal chemical salicylic acid mitigates the negative effects of drought on photosynthesis and membrane lipid peroxidation of purple majesty. Acta Ecol Sin, 2011, 31(1): 67–74 (in Chinese with English abstract)[7]Wang X M, Yuan X J, Han S, Zha H W, Sun X C, Huang J H, Liu Y N. Aniline modified hypercrosslinked polystyrene resins and their adsorption equilibriums, kinetics and dynamics towards salicylic acid from aqueous solutions. Chem Eng J, 2013, 233: 124–131[8]张玉秀, 柴团耀. 植物耐金属机理研究进展. 植物学报, 1999, 41: 453–457Zhang Y X, Chai T Y. Research advances on the mechanisms of heavy metal tolerance in plants. Acta Bot Sin, 1999, 41: 453–457 (in Chinese with English abstract)[9]Ashraf M, Iris F, Manfred G. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol, 2003, 132: 272–281[10]刘素纯, 萧浪涛, 廖柏寒, 匡逢春, 黄运湘. 铅、镉胁迫对黄瓜幼苗内源水杨酸的影响. 湖南农业科学, 2006, (3): 25–28Liu S C, Xiao L T, Liao B H, Kuang F C, Huang Y X. Effects on endogenous salicylic acid of cucumber seedling sunder lead and cadmium stress. Hunan Agric Sci, 2006, (3): 25–28 (in Chinese with English abstract)[11]Freeman J L, Garcia D, Kim D, Hopf A, Salt D E. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in thlaspinickelhyper accumulators. Plant Physiol, 2005, 137: 1082–1091[12]Drazic G, Mihailovic N. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci, 2005, 168: 511–517[13]张艳英, 周楠, 刘鹏, 徐根娣, 陈文荣, 蔡妙珍. 铜胁迫对烟草幼苗氮代谢的影响. 生态学报, 2009, 29: 6779–6784Zhang Y Y, Zhou N, Liu P, Xu G D, Chen W R, Cai M Z. Effect of Cu stress on nitrogen metabolism of Nicotiana tabacum L. seedling. Acta Ecol Sin, 2009, 29: 6779–6784 (in Chinese with English abstract)[14]张小梅, 王智鑫, 李广录. 水杨酸对铬胁迫下绿豆幼苗生长抑制的缓解效应. 河南农业科学, 2012, 41(11): 52–54Zhang X M, Wang Z X, Li G L. Mitigating effects of SA on inhibition of Cr2+ stress to mung bean seedling growth. Henan Agric Sci, 2012, 41(11): 52–54 (in Chinese with English abstract)[15]计汪栋, 施国新, 张慧, 徐勤松, 许晔, 杜开和. 菹草对Hg2+胁迫的生理和结构应答反应. 生态学报, 2007, 27: 2856–2863Ji W D, Shi G X, Zhang H, Xu Q S, Xu Y, Du K H. Physiolgical and ultrastructural responses of Potamogeton crispus to Hg2+ stress. Acta Ecol Sin, 2007, 27: 2856–2863 (in Chinese with English abstract)[16]Delhaize E. Uptake on environmental stress:aluminum toxicity and tolerance in plants. Plant Physiol, 1995, 107: 315–321[17]郑国红, 胡婵娜, 刘鹏. 外源钾对铁胁迫下水稻元素吸收运输规律的影响. 水土保持学报, 2010, 24(5): 141–145Zheng G H, Hu C N, Liu P. Effects of exogenous kalium on elements absorption and transportation of rice under iron toxicity. J Soil Water Con, 2010, 24(5): 141–145 (in Chinese with English abstract)[18]Peter R. Interaction between aluminum toxicity and calcium uptake at the root apex in near-isogenies lines of wheat (Triticum aestivan L.) differing in aluminum tolerance. Plant Physiol, 1993, 102: 975–982[19]Drewm C. Oxygen deficiency and root metabolism: injury and acceliation under hypoxia and anoxia. Annu Rev Plant Physiol Mol Biol, 1997, 48: 223–250[20]Link H R, Weng C H, Lo H F. Study of the root antioxidative system of tomatoes and eggplants under water logged conditions. Plant Sci, 2004, 167: 355–366[21]Wang C, Zhang S H, Wang P F, Hou J, ZhangW J, LiW, Lin Z P. The effect of excess Zn onmineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 2009, 75, 1468–1476[22]周媛. 水杨酸对铝胁迫下栝楼生长的调控机理研究. 浙江师范大学硕士论文, 浙江金华, 2012Zhou Y. The Mechanism of Salicylic Acid Regulating Aluminum Stress in Trichosathe skirilowii Maxim. MS Thesis of Zhejiang Normal University, Jinhua, China, 2012 (in Chinese with English abstract) |
[1] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[2] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[3] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[4] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[5] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[6] | 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因[J]. 作物学报, 2021, 47(8): 1460-1471. |
[7] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[8] | 张久权, 闫慧峰, 褚继登, 李彩斌. 运用广义线性混合模型分析随机区组重复测量的试验资料[J]. 作物学报, 2021, 47(2): 294-304. |
[9] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[10] | 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120. |
[11] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
[12] | 李晓旭, 王蕊, 张利霞, 宋亚萌, 田晓楠, 葛荣朝. 水稻基因OsATS的克隆及功能鉴定[J]. 作物学报, 2021, 47(10): 2045-2052. |
[13] | 董庆园,马德清,杨学,刘勇,黄昌军,袁诚,方敦煌,于海芹,童治军,沈俊儒,许银莲,罗美中,李永平,曾建敏. 高抗黑胫病烤烟BAC文库的构建及分析[J]. 作物学报, 2020, 46(6): 869-877. |
[14] | 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512. |
[15] | 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869. |
|