欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (07): 1047-1055.doi: 10.3724/SP.J.1006.2015.01047

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

冷驯化不同阶段茶树DNA甲基化模式的变化

周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*   

  1. 中国农业科学院茶叶研究所/ 农业部茶树生物学与资源利用重点实验室 / 国家茶树改良中心,浙江杭州310008
  • 收稿日期:2015-01-15 修回日期:2015-04-02 出版日期:2015-07-12 网络出版日期:2015-05-04
  • 通讯作者: 王新超, E-mail: wangxinchao@caas.cn; 杨亚军, E-mail: yjyang@tricaas.com
  • 基金资助:

    本研究由国家自然科学基金项目(31170650)和国家现代农业产业技术体系建设专项(CARS-23)资助。

Changes of DNA Methylation Levels and Patterns in Tea Plant (Camellia sinensis) during Cold Acclimation

ZHOU Yan-Hua,CAO Hong-Li,YUE Chuan,WANG Lu,HAO Xin-Yuan,WANG Xin-Chao*,YANG Ya-Jun*   

  1. Tea Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture / National Center for Tea Improvement, Hangzhou 310008, China
  • Received:2015-01-15 Revised:2015-04-02 Published:2015-07-12 Published online:2015-05-04
  • Contact: 王新超, E-mail: wangxinchao@caas.cn; 杨亚军, E-mail: yjyang@tricaas.com

摘要:

低温胁迫是影响茶树产量、生长发育和地域分布的重要环境因子之一,茶树需要通过冷驯化的诱导来提高其抗寒性。DNA甲基化是植物表观遗传的重要方式,环境胁迫会引起植物DNA甲基化状态的改变。为研究DNA甲基化是否参与茶树的低温响应,本研究利用甲基化敏感扩增多态性技术(MSAP)和高效液相色谱法(HPLC),分析了不同冷驯化阶段茶树基因组DNA甲基化水平及状态变化。MSAP分析结果表明,50对选择性扩增引物在对照、驯化后和脱驯化样品中分别扩增出905968970个甲基化条带,总甲基化位点比例分别为50.6%54.1%54.2%。与未驯化的样品相比,冷驯化后和脱驯化的样品基因组DNA甲基化水平升高。HPLC的检测结果与MSAP结果类似。进一步分析甲基化模式发现,与对照相比,茶树冷驯化过程中同时发生了甲基化和去甲基化现象,但总体变化趋势表现为甲基化水平的增加。表明茶树在抗寒响应中出现DNA甲基化现象

关键词: 茶树, 冷驯化, DNA甲基化甲基化敏感扩增多态性(MSAP), 高效液相色谱(HPLC)

Abstract:

Low temperature is one of the most critical environmental factors that limit tea plant growth, survival and geographical distribution. Tea plant can enhance its cold tolerance after undergoing a period of cold acclimation. DNA methylation is one of the epigenetic phenomena, and can be altered by environmental stress in plant. In order to explore the relationship between DNA methylation and low temperature stress response in tea plant, methylation sensitive amplified polymorphism (MSAP) and high performance liquid chromatography (HPLC) were used to analyze the changes of DNA methylation level and pattern in this study. The MSAP results showed that 905, 968, and 970 methylated bands were amplified with 50 selected primers in non-acclimated sample (CK), fully acclimated and de-acclimated samples, with the methylation levels of 50.6%, 54.1%, and 54.2%, respectively. DNA methylation levels in fully acclimated and de-acclimated samples were increased compared with CK. HPLC results were similar with MSAP results. In addition, DNA demethylation and methylation were both occurred during cold acclimation, but the DNA methylation was increased more than the

Key words: Tea plant, Cold acclimation, DNA methylation, MSAP, HPLC

[1]虞富莲. 论茶树原产地和起源中心. 茶叶科学, 1986, 6: 1–8



Yu F L. Discussion on the originating place and the originating centre of tea plant. J Tea Sci, 1986, 6: 1–8 (in Chinese with English abstract)



[2]王新超, 杨亚军. 茶树抗性育种研究现状. 茶叶科学, 2003, 23: 94–98



Wang X C, Yang Y J. Research progress on resistance breeding of tea plant. J Tea Sci, 2003, 23: 94–98 (in Chinese with English abstract)



[3]杨亚军, 郑英雷, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响. 茶叶科学, 2004, 24: 177–182



Yang Y J, Zheng L Y, Wang X C. Effect of cold acclimation and ABA on cold hardiness, contents of proline of tea plants [Camellia sinensis (L.) O. Kuntze]. J Tea Sci, 2004, 24: 177–182 (in Chinese with English abstract)



[4]杨亚军, 郑雷英, 王新超. 低温对茶树叶片膜脂脂肪酸和蛋白质的影响. 亚热带植物科学, 2005, 34(1): 5–9



Yang Y J, Zheng L Y, Wang X C. Changes of membrane fatty acid composition and protein in tea leaves at low temperature. Subtrop Plant Sci, 2005, 34(1): 5–9 (in Chinese with English abstract)



[5]Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X, Yang Y J. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom, 2013, 14: 415



[6]曹红利, 岳川, 郝心愿, 王新超, 杨亚军. 茶树胆碱单加氧酶CsCMO的克隆及甜菜碱合成关键基因的表达分析. 中国农业科学, 2013, 46: 3087–3096



Cao H L, Yue C, Hao X Y, Wang X C, Yang Y J. Cloning of choline monooxygenase (CMO) gene and expression analysis of the key glycine betaine biosynthesis-related genes in tea plant (Camellia sinensis). Sci Agric Sin, 2013, 46: 3087–3096 (in Chinese with English abstract)



[7]曹红利, 岳川, 周艳华, 王璐, 郝心愿, 杨亚军, 王新超. 茶树bZIP 转录因子基因CsbZIP1 的克隆与表达定位. 作物学报, 2014, 40: 1702–1709



Cao H L, Yue C, Zhou Y H, Wang L, Hao X Y, Yang Y J, Wang X C. Molecular cloning and expression of a bZIP transcription factor gene CsbZIP1 in tea plant (Camellia sinensis). Acta Agron Sin, 2014, 40: 1702–1709 (in Chinese with English abstract)



[8]岳川, 曹红利, 周艳华, 王璐, 郝心愿, 王新超, 杨亚军. 茶树谷胱甘肽还原酶基因CsGRs的克隆与表达分析. 中国农业科学, 2014, 47: 3277–3289



Yue C, Cao H L, Zhou Y H, Wang L, Hao X Y, Wang X C, Yang Y J. Cloning and expression analysis of glutathione reductase genes (CsGRs) in tea plant (Camellia sinensis). Sci Agric Sin, 2014, 47: 3277–3289 (in Chinese with English abstract)



[9]Bender J. DNA methylation and epigenetics. Annu Rev Plant Biol, 2004, 55: 41–68



[10]Vanyushin B F, Ashapkin V V. DNA methylation in higher plants: past, present and future. Biochim Biophys Acta, 2011, 1809: 360–368



[11]Chan S W, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet, 2005, 6: 351–360



[12]Wang W, Zhao X, Pan Y, Zhu L, Fu B, Li Z. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genom, 2011, 38: 419–424



[13]Jullien P E, Kinoshita T, Ohad N, Berger F. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell, 2006, 18: 1360–1372



[14]Adams K L, Percifield R, Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid. Genetics, 2004, 168: 2217–2226



[15]潘雅姣, 傅彬英, 王迪, 朱苓华, 黎志康. 水稻干旱胁迫诱导DNA甲基化时空变化特征分析. 中国农业科学, 2009, 42: 3009–3018



Pan Y J, Fu B Y, Wang D, Zhu L H, Li Z K. Spatial and temporal profiling of DNA methylation induced by drought stress in rice. Sci Agric Sin, 2009, 42: 3009–3018 (in Chinese with English abstract)



[16]Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem, 2002, 277(40): 37741–37746



[17]高桂珍, 应菲, 陈碧云, 李浩, 吕晓丹, 闫贵欣, 许鲲, 伍晓明. 热胁迫过程中白菜型油菜种子DNA的甲基化. 作物学报, 2011, 37: 1597–1604



Gao G Z, Ying F, Chen B Y, Li H, Lv X D, Yan G X, Xu K, Wu X M. DNA methylation of seed in response to heat stress in Brassica rapa L. Acta Agron Sin, 2011, 37: 1597–1604 (in Chinese with English abstract)



[18]Dowen R H, Pelizzola M, Schmitz R J, Lister R, Dowen J M, Nery J R, Dixon J E, Ecker J R. Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA, 2012, 109: E2183–2191



[19]Portis E, Acquadro A, Comino C, Lanteri S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci, 2004, 166: 169–178



[20]Banaei Moghaddam A M, Fuchs J, Czauderna T, Houben A, Mette M F. Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. Theor Appl Genet, 2010, 120: 215–226



[21]Sha A H, Lin X H, Huang J B, Zhang D P. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics, 2005, 273: 484–490



[22]Tan M P. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem, 2010, 48: 21–26



[23]Osabe K, Clement J D, Bedon F, Pettolino F A, Ziolkowski L, Llewellyn D J, Finnegan E J, Wilson I W. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues. PLoS One, 2014, 9(1): e86049



[24]Yaish M W, Peng M, Rothstein S J. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). Methods Mol Biol, 2014, 1062: 285–298



[25]Johnston J W, Harding K, Bremner D H, Souch G, Green J, Lynch P T, Grout B, Benson E E. HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Biochem, 2005, 43: 844–853



[26]Zhao Y L, Yu S X, Ye W W, Wang H M, Wang J J, Fang B X. Study on DNA cytosine methylation of cotton (Gossypium hirsutum L.) genome and its implication for salt tolerance. Agric Sci China, 2010, 9: 783–791



[27]Chakrabarty D, Yu K W, Paek K Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus). Plant Sci, 2003, 165: 61–68



[28]Richards E J. DNA methylation and plant development. Trends Genet, 1997, 13: 319–323



[29]李雪林, 林忠旭, 聂以春, 郭小平, 张献龙. 盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析. 作物学报, 2009, 35: 588–596



Li X L, Li Z X, Nie Y C, Guo X P, Zhang X L. MSAP analysis of epigenetic changes in cotton (Gossypium hirsutum L.) under salt stress. Acta Agron Sin, 2009, 35: 588–596 (in Chinese with English abstract)



[30]Cervera M T, Ruiz-Garcia L, Martinez-Zapater J M. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genom, 2002, 268: 543–552



[31]盖树鹏, 张风, 张玉喜, 郑国生. 低温解除牡丹休眠进程中基因组DNA甲基化敏感扩增多态性(MSAP)分析. 农业生物技术学报, 2012, 20: 261–267



Gai S P, Zhang F, Zhang Y X, Zheng G S. Analysis of genomic DNA methylation during chilling induced endo-dormancy release by methylation sensitive amplified polymorphism (MSAP) technology in tree peony (Paeonia suffruticosa). J Agric Biotech, 2012, 20: 261–267 (in Chinese with English abstract)



[32]张勇, 邓科君, 张韬, 彭金华, 周建平, 任正隆. 黑麦基因组DNA甲基化修饰位点的MSAP分析. 麦类作物学报, 2009, 29: 559–564



Zhang Y, Deng K J, Zhang T, Peng J H, Zhou J P, Ren Z L. Analysis on genomic DNA methylation modification of rye by methylation-sensitive ampl ification polymorphism. J Triticeae Crops, 2009, 29: 559–564 (in Chinese with English abstract)



[33]Kalberer S R, Wisniewski M, Arora R. Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci, 2006, 171: 3–16



[34]Thomashow M F. Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599



[35]Christov N.K, Yoneyama S, Shimamoto Y, Imai R. Differential expression of wheat genes during cold acclimation. Cytol Genet, 2007, 41: 142–150



[36]Burn J E, Bagnall D J, Metzger J D, Dennis E S, Peacock W J. DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci USA, 1993, 90: 287–291



[37]Zhang L, Wang Y, Zhang X H, Zhang M, Han D G, Qiu C P, Han Z H. Dynamics of phytohormone and DNA methylation patterns changes during dormancy induction in strawberry (Fragaria x ananassa Duch.). Plant Cell Rep, 2012, 31: 155–165



[38]Pan Y J Wang W S, Zhao X Q, Zhu L H, Fu B Y, Li Z K. DNA methylation alterations of rice in response to cold stress. Plant Omics J, 2011, 4: 364–369



[39]Mayer B F, Ali-Benali M A, Demone J, Bertrand A, Charron J. Cold acclimation induces distinctive changes in the chromatin state and transcript levels of COR genes in Cannabis sativa varieties with contrasting cold acclimation capacities. Physiol Plant, 2014: DOI: 10.1111/ppl.12318



[40]徐青, 余云舟, 赵萌, 孙东晓. DNA甲基化在动植物遗传育种中的研究进展. 生物技术通讯, 2011, 2: 113–117



Xu Q, Yu Y Z, Zhao M, Sun D X. Progress of DNA methylation in genetics and breeding of plant and animal. Lett Biotech, 2011, 2: 113–117 (in Chinese with English abstract)

[1] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[2] 彭章, 童华荣, 梁国鲁, 石艺琦, 袁连玉. 茶树叶片和胚根原生质体的分离及PEG诱导融合[J]. 作物学报, 2018, 44(03): 463-470.
[3] 郝心愿,岳川,唐湖,钱文俊,王玉春,王璐,王新超,杨亚军. 茶树β-淀粉酶基因CsBAM3的克隆及其响应低温的表达模式[J]. 作物学报, 2017, 43(10): 1417-1425.
[4] 曹红利,王璐,钱文俊,郝心愿,杨亚军,王新超. 茶树CsbZIP4转录因子正调控拟南芥对盐胁迫响应[J]. 作物学报, 2017, 43(07): 1012-1020.
[5] 袁连玉,陈应娟,魏旭,童华荣*. 茶树金属耐受蛋白基因CsMTP11的克隆及功能分析[J]. 作物学报, 2017, 43(05): 708-717.
[6] 唐湖,郝心愿,王璐,肖斌,王新超,杨亚军. 茶树越冬芽在休眠与萌发时期的物质交流变化及其分子调控[J]. 作物学报, 2017, 43(05): 669-677.
[7] 陈林波,夏丽飞,田易萍,李梅,宋维希,梁名志,江昌俊. 基于数字基因表达谱分析的茶树花不育基因挖掘[J]. 作物学报, 2017, 43(02): 210-217.
[8] 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 .
[9] 钱文俊,岳川,曹红利,郝心愿,王璐,王玉春,黄玉婷,王博,王新超,肖斌,杨亚军. 茶树中性/碱性转化酶基因CsINV10的克隆与表达分析[J]. 作物学报, 2016, 42(03): 376-388.
[10] 王博,曹红利,黄玉婷,胡玉荣,钱文俊,郝心愿,王璐,杨亚军,王新超. 茶树生长素外运载体基因CsPIN3的克隆与表达分析[J]. 作物学报, 2016, 42(01): 58-69.
[11] 马春雷,姚明哲,王新超,金基强,马建强1陈亮. 茶树叶绿素合成相关基因克隆及在白叶1号不同白化阶段的表达[J]. 作物学报, 2015, 41(02): 240-250.
[12] 曹红利,岳川,周艳华,王璐,郝心愿,杨亚军*,王新超*. 茶树bZIP转录因子基因CsbZIP1的克隆与表达定位[J]. 作物学报, 2014, 40(09): 1702-1709.
[13] 王丽鸳,韦康,张成才,成浩. 茶树花转录组微卫星分布特征[J]. 作物学报, 2014, 40(01): 80-85.
[14] 李飞,徐建飞,刘杰,段绍光,卞春松,Jiwan P. PALTA,金黎平. 三个耐冻性不同的马铃薯野生种中FAD2基因的克隆及表达分析[J]. 作物学报, 2014, 40(01): 45-53.
[15] 蒋会兵,宋维希,矣兵,李友勇,马玲,陈林波,田易萍,段志芬,刘本英,梁名志. 云南茶树种质资源的表型遗传多样性[J]. 作物学报, 2013, 39(11): 2000-2008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!