欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (08): 1212-1219.doi: 10.3724/SP.J.1006.2015.01212

• 耕作栽培·生理生化 • 上一篇    下一篇

免耕冬小麦田土壤微生物特征和土壤酶活性对水分调控的响应

叶德练**,齐瑞娟**,管大海,李建民,张明才*,李召虎   

  1. 植物生长调节剂教育部工程研究中心 / 中国农业大学农学与生物技术学院, 北京100193
  • 收稿日期:2015-01-29 修回日期:2015-05-04 出版日期:2015-08-12 网络出版日期:2015-06-03
  • 通讯作者: 张明才, E-mail: zmc1214@163.com, Tel: 010-62733049
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A206)资助。

Response of Soil Microbial Characteristics and Soil Enzyme Activity to Irrigation Method in No-till Winter Wheat Field

YE De-Lian**,QI Rui-Juan**,GUAN Da-Hai,LI Jian-Min,ZHANG Ming-Cai*,LI Zhao-Hu   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2015-01-29 Revised:2015-05-04 Published:2015-08-12 Published online:2015-06-03
  • Contact: 张明才, E-mail: zmc1214@163.com, Tel: 010-62733049

摘要:

针对华北地区冬小麦的免耕农业管理方式,研究了不同水分管理方式对小麦产量及产量因子、土壤基础呼吸、土壤微生物量氮(SMBN)和土壤酶活性的影响。试验设常规灌溉(W1)、节水灌溉(W2)和无灌溉(W3) 3个处理,小麦全生育期总灌水量分别为150750 mmW1W2处理对小麦产量影响较小,但W3显著降低小麦产量。水分胁迫对冬小麦拔节期和灌浆期的土壤基础呼吸和土壤微生物量氮影响较大,土壤基础呼吸表现为W2W3低于W1,而土壤微生物量氮的影响则表现为W1 > W2 > W3。随灌溉量的减少,土壤β-葡萄糖苷酶、多酚氧化酶和脲酶活性均有不同程度的降低。与冬小麦生长后期相比,土壤酶活性对水分的胁迫响应在生长前期更为敏感,其中0~10 cm土层的土壤酶活性受水分胁迫影响大于10~20 cm土层。研究结果表明,免耕条件下灌溉方式与灌溉量显著影响了土壤微生物活性,从而调节了冬小麦产量形成。

关键词: 灌溉, 水分胁迫, 土壤酶活性, 土壤基础呼吸, 微生物量氮

Abstract:

The purpose of this study was to understand the effects of conventional (150 mm, W1), water-saving (75 mm, W2), and zero (W3) irrigation on winter wheat yield, soil basal respiration, soil microbial biomass nitrogen (SMBN) and soil enzyme activities under no-till practice in North China Plain. Wheat yields in W1 and W2 were similar and significantly higher than that in W3. Water stress showed great influence on soil basal respiration and SMBN at jointing and filling stages, resulting in a significant decrease of soil basal respiration under W2 and W3 compared with that under W1, and a change of SMBN as W1 > W2 > W3. The activities of soil β-glucosidase, polyphenol oxidase, and urease declined with the decrease of irrigation quantity. Such influence was more sensitive in early growth period of wheat than in late growth period, particularly in the 0–10 cm soil layer. These results suggested that yield formation of winter wheat under no-till practice might result from the regualtion of soil microbial activity that received great impact of irrigation strategy.

Key words: Irrigation, Water stress, Soil enzyme activity, Soil basal respiration, Microbial biomass nitrogen

[1]Jenkinson D S, Ladd J N. Microbial biomass in soil: measurement and turnover. In: Paul V E A, Ladd J N, eds. Soil Biochemistry. New York: Marcel Dekker, 1981. pp 415–471



[2]Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fert Soils, 1999, 29: 111–129



[3]Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem, 2001, 33: 1633–1640



[4]Dick R P. Soil enzyme activities as indicators of soil quality. In: Doran J W, Coleman D C, Bezdicek D F, Stewart B A, eds. Defining Soil Quality for a Sustainable Environment, Madison, WI, USA: Soil Science Society of America Special Publication 35, 1994. pp 107–124



[5]Benitez E, Melgar R, Sainz H, Gomez, M, Nogales, R. Enzyme activities in the rhizosphere of pepper (Capsicum annuum L.) grown with olive cakemulches. Soil Biol Biochem, 2000, 32: 1829–1835



[6]Paz Jimenez M D, Horra A M, Peuzzo L, Palma M R. Soil quality: a new index based on microbiological and biochemical parameters. Biol Fert Soils, 2002, 35: 302–306



[7]Spedding T A, Hamel C, Mehuys G R, Madramootoo C A. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem, 2004, 36: 499–512



[8]Al-Kaisi M M, Yin X H. Tillage and crop residue effects on soil carbon and dioxide emission in corn-soybean rotations. J Environ Qual, 2005, 34: 437–445



[9]Adl S M, Coleman D C, Read F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric Ecol Environ, 2006, 114: 323–334



[10]Yancey P H, Clark M E, Hand S C, Bowlus R D, Somero G N. Living with water stress: evolution of osmolyte systems. Science, 1982, 217: 1214–1222



[11]Schimel J P, Gulledge J M, Clein-Curley J S, Lindstrom J E, Braddock J F. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga. Soil Biol Biochem, 1999, 31: 831–838



[12]Sardans J, Penuelas J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem, 2005, 37: 455–461



[13]Sardans J, Penuelas J. Soil enzyme activity in a Mediterranean forest after six years of drought. Soil Sci Soc Am J, 2010, 74: 838–851



[14]Meng Q, Sun Q, Chen X, Cui Z, Yue S, Zhang F, Römheld V. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ, 2012, 146: 93–102



[15]李素娟, 陈继康, 陈阜, 李琳, 张海林. 华北平原免耕冬小麦生长发育特征研究. 作物学报, 2008, 34: 290–296



Li S J, Chen J K, Chen F, Li L, Zhang H L. Characteristics of growth and development of winter wheat under zero tillage in North China Plain. Acta Agron Sin, 2008, 34: 290–296 (in Chinese with English abstract)



[16]Bergstrom D W, Monreal C M, Tomlin A D, Miller J J. Interpretation of soil enzyme activities in a comparison of tillage practices along a topographic and textural gradient. Can J Soil Sci, 2000, 80: 71–79



[17]王志敏, 王璞, 李绪厚, 李建民, 鲁来清. 冬小麦节水省肥高产简化栽培理论与技术. 中国农业科技导报, 2006, 8(5): 38–44



Wang Z M, Wang P, Li X H, Li J M, Lu L Q. Principle and technology of water-saving, fertilizer-saving, high-yielding and simple cultivation in winter wheat. Rev China Agric Sci Tech, 2006, 8(5): 38–44 (in Chinese with English abstract)



[18]秦欣, 刘克, 周丽丽, 周顺利, 鲁来清, 王润政. 华北地区冬小麦-夏玉米轮作节水体系周年水分利用特征. 中国农业科学, 2012, 45: 4014–4024



Qin X, Liu K, Zhou L L, Zhou Z L, Lu L Q, Wang R Z. Characteristics of annual water utilization in winter wheat-summer maize rotation system n North China Plain. Sci Agric Sin, 2012, 45: 4014–4024 (in Chinese with English abstract)



[19]Guan D, Zhang Y, Al-Kaisi M M, Wang Q, Zhang M, Li Z. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Tillage Res, 2015, 146: 286–295



[20]Bardgett R D, Ovell R D, Hobbs P J, Jarvis S C. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol Biochem, 1999, 31: 1021–1030



[21]Joergensen R G, Brookes P C. Ninhydrin-reactive nitrogen measurements of microbial biomass in 0.5M K2SO4 soil extracts. Soil Biol Biochem, 1990, 22: 1023–1027



[22]关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. pp 342–344



Guan S Y. Methods in Soil Enzyme Research. Beijing: Agriculture Press, 1986. pp 342–344 (in Chinese)



[23]Sinsabaugh R L, Antibus R K, Linkins A E, McClaugherty C A, Rayburn L, Repert D, Weiland T. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology, 1993, 74: 1586–1593



[24]Allison S D, Czimczik C I, Treseder K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biol, 2008, 14: 1156–1168



[25]王彬彬, 林启美, 陈源泉, 隋鹏, 高旺盛. 微池板比色法在多酚氧化酶和β-葡萄糖苷酶研究中的应用. 土壤学报, 2012, 49: 773–779



Wang B B, Lin Q M, Chen Y Y, Sui P, Gao W S. Application of microplate colorimetric method in determining activities of polyphenol oxidase and β-glucosidase in soil. Acta Pedol Sin, 2012, 49: 773–779 (in Chinese with English abstract)



[26]Zhang X, Chen S, Sun H, Pei D, Wang Y. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrig Sci, 2008, 27: 1–10



[27]Han H, Li Z, Ning T, Zhang X, Shan Y, Bai M. Radiation use efficiency and yield of winter wheat under deficit irrigation in North China. Plant Soil Environ, 2008, 54: 313–319



[28]Zhang X Y, Pei D, Li Z, Li J, Wang Y. Management of supplemental irrigation of winter wheat for maximum profit. In: FAO. Deficit Irrigation Practices: Water Reports, 2002. pp 57–65



[29]Sun H, Shen Y, Yu Q, Flerchinger G N, Zhang Y, Liu C, Zhang X. Effect of precipitation change on water balance and WUE of the winter wheat–summer maize rotation in the North China Plain. Agric Water Manag, 2010, 97: 1139–1145



[30]Sardans J, Peñuelas J, Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl Soil Ecol, 2008, 39: 223–235



[31]Hueso S, García C, Hernández T. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biol Biochem, 2012, 50: 167–173



[32]Sanaullah M, Blagodatskaya E, Chabbi A, Rumpel C, Kuzyakov Y. Drought effects on microbial biomass and enzyme activities in the rhizosphere of grasses depend on plant community composition. Appl Soil Ecol, 2011, 48: 38–44



[33]Yao X H, Min H, Lü Z H, Yuan H P. Influence of acetamiprid on soil enzymatic activities and respiration. Eur J Soil Biol, 2006, 42: 120–126



[34]Kato S, Haruta S, Cui Z J, Ishii M, Igarashi Y. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiol Ecol, 2004, 51: 133–142



[35]Blanchette R A. Deligni?cation by wood-decay fungi. Annu Rev Phytopathol, 1991, 29: 381–398



[36]Li F, Yu J, Nong M, Kang S, Zhang J. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agric Water Manag, 2010, 97: 231–239



[37]Steinweg J M, Jeffrey S D, Matthew D W. Modeling the effects of temperature and moisture on soil enzyme activity: linking laboratory assays to continuous field data. Soil Biol Biochem, 2012, 55: 85–92

[1] 史梦霞, 张佳笑, 石晓宇, 褚庆全, 陈阜, 雷永登. 近20年河北省几种高耗水作物的水分利用效率分析[J]. 作物学报, 2021, 47(12): 2450-2458.
[2] 要凯,赵章平,康益晨,张卫娜,石铭福,杨昕宇,范艳玲,秦舒浩. 沟垄覆膜对连作马铃薯土壤酶活性、理化性状及产量的影响[J]. 作物学报, 2019, 45(8): 1286-1292.
[3] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[4] 鱼海跃,闫岩,张钰石,张明才,李召虎. 不同灌溉条件下冠菌素对大豆光合特性与产量的调控效应[J]. 作物学报, 2019, 45(12): 1851-1858.
[5] 赵佳佳,马小飞,郑兴卫,郝建宇,乔玲,葛川,王爱爱,张树伟,张晓军,姬虎太,郑军. 不同水分条件下HMW-GS对小麦品质的影响[J]. 作物学报, 2019, 45(11): 1682-1690.
[6] 张经廷,吕丽华,董志强,张丽华,姚艳荣,申海平,姚海坡,贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素[J]. 作物学报, 2019, 45(11): 1746-1755.
[7] 石洪亮,严青青,张巨松,李春艳,窦海涛. 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用[J]. 作物学报, 2018, 44(8): 1196-1204.
[8] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J]. 作物学报, 2018, 44(04): 554-568.
[9] 袁莉民, 展明飞, 章星传, 王志琴, 杨建昌. 水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用[J]. 作物学报, 2018, 44(02): 245-259.
[10] 陈鸿飞,庞晓敏,张仁,张志兴,徐倩华,方长旬,李经勇,林文雄. 不同水肥运筹对再生季稻根际土壤酶活性及微生物功能多样性的影响[J]. 作物学报, 2017, 43(10): 1507-1517.
[11] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[12] 高亮,张维宏*,杜雄,郭江,宋晋辉,王晓明,赵治海. 覆膜和补灌对杂交谷子产量形成与水分利用效率的影响[J]. 作物学报, 2017, 43(01): 122-132.
[13] 褚光,展明飞,朱宽宇,王志琴,杨建昌*. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42(07): 1026-1036.
[14] 徐云姬,钱希旸,李银银,王志琴,杨建昌*. 根系分区交替灌溉对玉米籽粒灌浆及相关生理特性的影响[J]. 作物学报, 2016, 42(02): 230-242.
[15] 张自常,李永丰,杨霞,陆凡,邱光,李建伟. 干湿交替灌溉条件下不同种稗草对水稻光合特性和产量的影响[J]. 作物学报, 2015, 41(11): 1748-1757.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!