欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (02): 230-242.doi: 10.3724/SP.J.1006.2016.00230

• 耕作栽培·生理生化 • 上一篇    下一篇

根系分区交替灌溉对玉米籽粒灌浆及相关生理特性的影响

徐云姬,钱希旸,李银银,王志琴,杨建昌*   

  1. 扬州大学江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心,江苏扬州225009
  • 收稿日期:2015-07-19 修回日期:2015-11-20 出版日期:2016-02-12 网络出版日期:2015-12-07
  • 通讯作者: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2012CB114306), 国家自然科学基金项目(31271641,31471438),江苏省农业三新工程项目(SXG2014313)和江苏高校优势学科建设工程资助项目(PAPD)专项经费资助。

Effect of Alternate Irrigation in Partitioned Roots on the Kernel-filling and Its Related Physiological Characteristics in Maize

XU Yun-Ji,QIAN Xi-Yang,LI Yin-Yin,WANG Zhi-Qin,YANG Jian-Chang*   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
  • Received:2015-07-19 Revised:2015-11-20 Published:2016-02-12 Published online:2015-12-07
  • Contact: 杨建昌, E-mail: jcyang@yzu.edu.cn, Tel: 0514-87979317
  • Supported by:

    The research was supported by the National Basic Research Program (973 Program, 2012CB114306), the National Natural Science Foundation of China (31271641, 31471438), Jiangsu “Three-innovation” Agricultural Project (SXG2014313), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

摘要:

本研究旨在探明根系分区交替灌溉对玉米强、弱势粒灌浆及其相关生理特性的影响。以高产玉米品种登海11为材料,自抽雄至成熟设置常规灌溉(CI)和根系分区交替灌溉(PAI) 2种灌溉方式,观察植株穗位叶的光合特性、衰老特性、茎鞘非结构性碳水化合物(NSC)运转、强势粒和弱势粒中乙烯和多胺含量、籽粒灌浆特征及淀粉积累特性等变化。结果表明,与CI相比,PAI显著增加了籽粒产量,提高了灌浆后期穗位叶的光合性能,延缓了叶片衰老,促进了玉米茎鞘NSC的运转,增加了弱势粒中亚精胺(free-Spd)和精胺(free-Spm)含量,降低了弱势粒中腐胺(free-Put)含量和乙烯释放速率。PAI对强势粒多胺含量、乙烯释放速率以及灌浆速率和淀粉积累速率无显著影响。相关分析表明,籽粒灌浆速率和淀粉积累速率与内源free-Spd和free-Spm含量呈极显著正相关,与乙烯释放速率呈显著或极显著负相关。表明灌浆期较强的叶片光合能力、较高的茎鞘NSC运转率、弱势粒中较高的free-Spd和free-Spm水平以及较低的乙烯释放速率是PAI促进弱势粒灌浆和提高产量的重要原因。

关键词: 玉米, 根系分区交替灌溉, 籽粒灌浆, 强势粒, 弱势粒, 生理特性

Abstract:

This study investigated whether and how post-tasseling alternate irrigation in partitioned roots could enhance the filling of inferior caryopses in maize. A high-yielding maize cultivar, Denghai 11, was grown in a glasshouse, and two irrigation treatments, conventional irrigation (CI) and alternate irrigation in partitioned roots (PAI), were applied from tasseling to maturity. Kernel filling rates and starch accumulation rates of superior and inferior caryopses and changes in ethylene evolution rate and polyamine contents in caryopses, photosynthetic and senescence characteristics of the ear leaf and non-structural carbohydrates (NSC) in stems were determined. The results showed that, compared with CI, PAI significantly increased kernel yield, strengthened photosynthetic characteristics of the ear leaf during late kernel-filling period, delayed leaf senescence, promoted NSC remobilization from stems, and increased free-spermidine (free-Spd) and free-spermine (free-Spm) contents, whereas declined the free-putrescine (free-Put) content and ethylene evolution rate in inferior caryopses. No significant effect of PAI on the kernel filling of superior caryopses was detected. Correlation analysis showed that kernel-filling rates and starch accumulation rates were very significantly and positively correlated with free-Spd and free-Spm contents, and significantly and negatively correlated with ethylene evolution rate. The results indicate that PAI enhances the filling of inferior caryopses and increases kernel yield through increasing photosynthetic ability of the ear leaf, remobilization of NSC from stems, and free-Spd and free-Spm contents, and decreasing ethylene evolution rate in inferior caryopses during the grain-filling period.

Key words: Maize, Alternate irrigation in partitioned roots, Kernel filling, Superior caryopses, Inferior caryopses, Physiological characteristics

[1] Nagato K. Differences in grain weight of spikelets located at different positions within a rice panicle. Jpn J Crop Sci, 1941, 13: 156−169 (in Japanese with English abstract)



[2] 王蔚华, 郭文善, 方明奎, 封超年, 朱新开, 彭永欣. 小麦籽粒胚乳细胞增殖及物质充实动态. 作物学报, 2003, 29: 779−784



Wang W H, Guo W S, Fang M K, Feng C N, Zhu X K, Peng Y X. Endosperm cell proliferating and grain filling dynamics in wheat. Acta Agron Sin, 2003, 29: 779−784 (in Chinese with English abstract)



[3] 任亚梅, 刘兴华, 袁春龙, 郑建梅, 罗安伟. 乳熟期鲜食玉米穗不同部位碳水化合物的变化. 食品与生物技术学报, 2005, 24(6): 66–70



Ren Y M, Liu X H, Yuan C L, Zheng J M, Luo A W. Study on the carbohydrate change at different parts of fresh unripe maize ears. J Food Sci Biotechnol, 2005, 24(5): 66–70 (in Chinese with English abstract)



[4] 徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452–1461



Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin, 2013, 39: 1452–1461 (in Chinese with English abstract)



[5] 徐云姬, 顾道健, 秦昊, 张耗, 王志琴, 杨建昌. 玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化. 作物学报, 2015, 41: 297–307



Xu Y J, Gu D J, Qin H, Zhang H, Wang Z Q, Yang J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agron Sin, 2015, 41: 297–307 (in Chinese with English abstract)



[6] 王忠. 植物生理学(第2版). 北京: 中国农业出版社, 2008. pp 335–336



Wang Z. Plant Physiology, 2nd edn. Beijing: China Agriculture Press, 2008. pp 335–336 (in Chinese)



[7] Yang J C, Zhang J H, Wang Z Q, Liu K, Wang P. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. J Exp Bot, 2006, 57: 149–160



[8] Yang J, Cao Y, Zhang H, Liu L, Zhang J. Involvement of polyamines in the post-anthesis development of inferior and superior spikelets in rice. Planta, 2008, 228: 137–149



[9] Wang Z Q, Xu Y J, Wang J C, Yang J C, Zhang J H. Polyamine and ethylene interactions in grain filling of superior and inferior spikelets of rice. Plant Growth Regul, 2012, 66: 215–228



[10] Yang W B, Yin Y P, Li Y, Cai T, Ni Y L, Peng D L, Wang Z L. Interactions between polyamines and ethylene during grain filling in wheat grown under water deficit conditions. Plant Growth Regul, 2014, 72: 189–201



[11] 康绍忠, 张建华, 梁宗锁, 胡笑涛, 蔡焕杰. 控制性交替灌溉——一种新的农田节水调控思路. 干旱地区农业研究, 1997, 15(1): 1−6



Kang S Z, Zhang J H, Liang Z S, Hu X T, Cai H J. The controlled alternative irrigation—a new approach for water saving regulation in farmland. Agric Res Arid Areas, 1997, 15(1): 1−6 (in Chinese with English abstract)



[12] 康绍忠, 潘英华, 石培泽, 张建华. 控制性作物根系分区交替灌溉的理论与试验. 水利学报, 2001, 11: 80−86



Kang S Z, Pan Y H, Shi P Z, Zhang J H. Controlled root-divided alternative irrigation—theory and experiments. J Hydraul Eng, 2001, 11: 80−86 (in Chinese with English abstract)



[13] 梁宗锁, 康绍忠, 石培泽, 潘英华, 何立绩. 隔沟交替灌溉对玉米根系分布和产量的影响及其节水效益. 中国农业科学, 2000, 33: 26−32



Liang Z S, Kang S Z, Shi P Z, Pan Y H, He L J. Effect of alternate furrow irrigation on maize production, root density and water-saving benefit. Sci Agric Sin, 2000, 33: 26−32 (in Chinese with English abstract)



[14] 杜太生, 康绍忠, 王振昌, 王锋, 杨秀英, 苏兴礼. 隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应. 作物学报, 2007, 33: 1982−1990



Du T S, Kang S Z, Wang Z C, Wang F, Yang X Y, Su X L. Responses of cotton growth, yield, and water use efficiency to alternate furrow irrigation. Acta Agron Sin, 2007, 33: 1982−1990 (in Chinese with English abstract)



[15] 宋磊, 岳玉苓, 狄方坤, 魏钦平, 高照全, 张继祥. 分根交替灌溉对桃树生长发育及水分利用效率的影响. 应用生态学报, 2008, 19: 1631−1636



Song L, Yue Y L, Di F K, Wei Q P, Gao Z Q, Zhang J X. Effects of alternative partial root zone irrigation on peach growth, productivity, and water use efficiency. Chin J Appl Ecol, 2008, 19: 1631−1636 (in Chinese with English abstract)



[16] 李志军, 张富仓, 康绍忠. 控制性根系分区交替灌溉对冬小麦水分与养分利用的影响. 农业工程学报, 2005, 21(8): 17−21



Li Z J, Zhang F C, Kang S Z. Impacts of the controlled roots-divided alternative irrigation on water and nutrient use of winter wheat. Trans CSAE, 2005, 21(8): 17−21 (in Chinese with English abstract)



[17] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182–193



Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182–193 (in Chinese with English abstract)



[18] Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290–300



[19] 何照范. 粮油籽粒品质及其分析技术. 北京: 中国农业出版社, 1985. pp 144–150



He Z F. Grain Quality of Cereals for Gaining Oil and Its Analysis Technique. Beijing: China Agriculture Press, 1985. pp 144–150 (in Chinese)



[20] 王爱国, 罗广华, 邵从本, 吴淑君, 郭俊彦. 大豆种子超氧物歧化酶的研究. 植物生理学报, 1983, 9(1): 77−84



Wang A G, Luo G H, Shao C B, Wu S J, Guo J Y. A study on the superoxide dismutase of soybean seeds. Acta Phytophysiol Sin, 1983, 9(1): 77−84 (in Chinese with English abstract)



[21] 赵世杰, 许长成, 邹琦, 孟庆伟. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30: 207−210



Zhao S J, Xu C C, Zou Q, Meng Q W. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol Commun, 1994, 30: 207−210 (in Chinese with English abstract)



[22] 张宪政, 陈凤玉, 王荣富. 植物生理学实验技术. 沈阳: 辽宁科学技术出版社, 1994. pp 144–151



Zhang X Z, Chen F Y, Wang R F. Experiment Technology of Plant Physiology. Shenyang: Liaoning Science and Technology Press, 1994. pp 144–151 (in Chinese)



[23] Beltrano J, Carbone A, Montaldi E R, Guiamet J J. Ethylene as promoter of wheat grain maturation and ear senescence. Plant Growth Regul, 1994, 15: 107–112



[24] Flores H E, Galston A W. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol, 1982, 69: 701−706



[25] Di Tomaso J M, Shaff J E, Kochian L V. Putrescine-induced wounding and its effects on membrane integrity and ion transport processes in roots of intact corn seeding. Plant Physiol, 1989, 90: 988–995



[26] 农梦玲, 魏贵玉, 李伏生. 不同时期根区局部灌溉对玉米干物质积累和水氮利用的影响. 玉米科学, 2012, 20: 115–120



Nong M L, Wei G Y, Li F S. Effect of partial root-zone irrigation at different growth stages on dry mass accumulation and water and nitrogen use of maize. J Maize Sci, 2012, 20: 115–120 (in Chinese with English abstract)



[27] 傅丰贝, 陆文娟, 李伏生. 不同控水时段根区局部灌溉对玉米生理和水分利用效率的影响. 植物营养与肥料学报, 2014, 20: 1378–1386



Fu F B, Lu W J, Li F S. Effects of partial root-zone irrigation at different water-control duration on physiology and water use efficiency of maize. Plant Nutr Fert Sci, 2014, 20: 1378–1386 (in Chinese with English abstract)



[28] 李国强, 周吉, 路小芳, 曹治彦, 杨永强, 徐萍, 张正斌. 雨养条件下玉米穗位叶与产量关系研究. 作物杂志, 2013, (3): 25–28



Li G Q, Zhou J, Lu X F, Cao Z Y, Yang Y Q, Xu P, Zhang Z B. Study on the relationship between ear leaf and yield of maize in rainfed condition. Crops, 2013, (3): 25–28 (in Chinese with English abstract) 



[29] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 459–460



Ling Q H. The Quality of Crop Population. Shanghai: Shanghai Scientific and Technical Publishers, 2000. pp 459–460 (in Chinese)



[30] 郭书亚, 张新, 张前进, 王振华, 李亚贞, 顾顺芳, 焦念元, 尹飞, 付国占. 秸秆覆盖深松对夏玉米花后穗位叶衰老和产量的影响. 玉米科学, 2012, 20: 104–107



Guo S Y, Zhang X, Zhang Q J, Wang Z H, Li Y Z, Gu S F, Jiao N Y, Yin F, Fu G Z. Effects of straw mulching and subsoiling on ear leaf senescence after anthesis and yield of summer maize. J Maize Sci, 2012, 20: 104–107 (in Chinese with English abstract)



[31] Chen T T, Xu Y J, Wang J C, Wang Z Q, Yang J C, Zhang J H. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J Exp Bot, 2013, 64: 2523–2538



[32] Bollmark M, Eliasson L. Ethylene accelerates the breakdown of cytokinin and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiol Plant, 1990, 80: 534–540



[33] Yang J, Zhang J, Huang Z, Zhu Q, Wang Z. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot, 2002, 90: 369–377



[34] Hou Z, Liu G, Hou L, Wang L, Liu X. Regulatory function of polyamine oxidase-generated hydrogen peroxide in ethylene-induced stomatal closure in Arabidopsis thaliana. J Integr Agric, 2013, 12: 251–262



[35] Ravanel S, Gakiere B, Job D, Dource R. The specific features of methionine biosynthesis, and metabolism in plant. Proc Natl Acad Sci USA, 1998, 95: 7805−7812



[36] 刘桃菊, 戚昌瀚, 唐建军. 水稻根系建成与产量及其构成关系的研究. 中国农业科学, 2002, 35: 1416–1419



Liu T J, Qi C H, Tang J J. Studies on relationship between the character parameters of root and yield formation in rice. Sci Agric Sin, 2002, 35: 1416−1419 (in Chinese with English abstract)



[37] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44: 36−46



Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44: 36−46 (in Chinese with English abstract)



[38] 付景, 刘洁, 曹转勤, 王志琴, 张耗, 杨建昌. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40: 1056−1065



Fu J, Liu J, Cao Z Q, Wang Z Q, Zhang H, Yang J C. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars. Acta Agron Sin, 2014, 40: 1056−1065 (in Chinese with English abstract)



[39] Xue Q, Zhu Z, Musick J T, Stewart B A, Dusek D A. Root growth and water uptake in winter wheat under deficit irrigation. Plant Soil, 2003, 257: 151–161



[40] 慕自新, 张岁岐, 郝文芳, 梁爱华, 梁宗锁. 玉米根系形态性状和空间分布对水分利用效率的调控. 生态学报, 2005, 25: 2895–2900



Mu Z X, Zhang S Q, Hao W F, Liang A H, Liang Z S. The effect of root morphological traits and spatial distribution on WUE in maize. Acta Ecol Sin, 2005, 25: 2895–2900 (in Chinese with English abstract)



[41] 潘丽萍, 李彦, 唐立松. 局部根区灌溉对棉花主要生理生态特性的影响. 中国农业科学, 2009, 42: 2982–2986



Pan L P, Li Y, Tang L S. Growth and allocation of photosynthetic produces in cotton under alternative partial root-zone irrigation. Sci Agric Sin, 2009, 42: 2982−2986 (in Chinese with English abstract)



[42] 胡田田, 康绍忠, 原丽娜, 张富仓, 李志军. 根区湿润方式对玉米根系生长发育的影响. 生态学报, 2008, 28: 6180–6188



Hu T T, Kang S Z, Yuan L N, Zhang F C, Li Z J. Effects of partial root-zone irrigation on growth and development of maize root system. Acta Ecol Sin, 2008, 28: 6180–6188 (in Chinese with English abstract) 



[43] 李彩霞, 孙景生, 周新国, 邱新强, 刘祖贵, 强小嫚, 郭冬冬. 隔沟交替灌溉条件下玉米根系形态性状及结构分布. 生态学报, 2011, 31: 3956–3963



Li C X, Sun J S, Zhou X G, Qiu X Q, Liu Z G, Qiang X M, Guo D D. Root morphology characteristics under alternate furrow irrigation. Acta Ecol Sin, 2011, 31: 3956–3963 (in Chinese with English abstract)

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 闫岩, 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才, 李召虎. 冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率[J]. 作物学报, 2022, 48(2): 423-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!