欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (02): 222-229.doi: 10.3724/SP.J.1006.2016.00222

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花GhHMGR基因在胚珠生长发育过程中的功能

马富磊,李德谋,李志,杨卫娟,周雪,游宇,罗小英*   

  1. 西南大学生物技术中心 / 农业部生物技术与作物品质改良重点开放实验室 / 重庆市农业生物技术重点实验室, 重庆北碚400716
  • 收稿日期:2015-04-10 修回日期:2015-09-06 出版日期:2016-02-12 网络出版日期:2015-10-08
  • 通讯作者: 罗小英, E-mail: luoxy@swu.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31171596)和中央高校基本科研业务费项目(XDJK2014C067, XDJK2014D041)资助。

GhHMGR Gene Function in Ovule Development of Cotton (Gossypium hursutum L.)

MA Fu-Lei,LI De-Mou,LI Zhi,YANG Wei-Juan,ZHOU Xue,YOU Yu,LUO Xiao-Ying*   

  1. Biotechnology Research Center of Southwest University / Key Laboratory of Biotechnology and Crop Quality Improvement of Ministry of Agriculture / Chongqing Key Laboratory of Agricultural Biotechnology, Chongqing 400716, Chin
  • Received:2015-04-10 Revised:2015-09-06 Published:2016-02-12 Published online:2015-10-08
  • Contact: 罗小英, E-mail: luoxy@swu.edu.cn
  • Supported by:

    This research was supported by the Joint Funds of the National Natural Science Foundation of China (31171596) and the Fundamental Research Funds for the Central Universities ( XDJK2014C067, XDJK2014D041).

摘要:

采用植物基因工程技术, 选用CaMV35S组成型启动子驱动棉花3-羟基-3-甲基-戊二酰辅酶A还原酶基因GhHMGR在棉花中表达, 检测10 DPA(days post anthesis)棉花胚珠内HMGR (3-hydroxy-3- methylglutaryl coenzyme A reductase)酶及可溶性糖、脂质及蛋白含量, 同时进行了胚珠离体培养。结果显示, GhHMGR在棉花光照部位(叶柄和铃壳)表达量相对较高, 非光照部位(根及胚珠)表达量低;超量表达GhHMGR可部分恢复拟南芥hmgr突变体性状;相较野生型, 超量表达株系10 DPA胚珠的HMGR含量升高, 反义株系则降低;且超量表达株系总脂质及蛋白含量升高, 可溶性总糖含量降低, 反义株系则出现相反结果;HMGR竞争性抑制剂洛伐他汀处理会导致胚珠发育畸形。以上结果表明, GhHMGR基因在棉花胚珠生长发育过程中扮演着重要的角色。

关键词: 棉花, GhHMGR, 胚珠, HMGR

Abstract:

The constitutive promoter CaMV35S was selected to drive the expression of GhHMGR gene in cotton by using the plant genetic engineering technology. The HMGR contents of ovule (10 DPA) of transgenic lines were detected, and the contents of total sugar, oil and protein as well. Meanwhile, we also performed ovule culture in vitro. The results showed that the expression level of GhHMGR was higher in part organ under light, such as petiole and boll shell than in root and ovule in dark. The GhHMGR gene could partly recover Arabidopsis (Arabidopsis thaliana) hmgr mutant characteristics. Compared with wild-typeWT, the HMGR contents of ovule (10 DPA) in overexpression transgenic lines increased, whereas decreased in suppression expression lines. While the contents of total oil and protein of overexpression transgenic lines increased, and that of total sugar decreased. Meanwhile, the suppression expression lines performed in an opposite trend. The investigation of ovule culture in vitro showed that ovules became deformity after treated with the inhibitor. All of these implied that expression of GhHMGR gene plays a key role in the development of cotton ovule.

Key words: cotton (Gossypium hursutum L.), GhHMGR, ovule, HMGR

[1]杨红旗. 我国棉花生产现状与发展前景分析. 种子科技, 2010, 2: 5–6

Yang H Q. The analysis of cotton production and development prospect in China. Seeds Sci Technol, 2010, 2: 5–6

[2]Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro Models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366

[3]Bach T J. Some new aspects of isoprenoid biosynthesis in plants—a review. Lipids, 1995, 30: 191–202

[4]Lombard J, Moreira D. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol, 2011, 28: 87–99

[5]Wang Y, Darnay B G, Rodwell V W. Identification of the principal catalytically important acidic residues of 3-hydroxy-3-metIIylglutaryl coenzyme A reductase. J Biol Chem, 1990, 265: 21634–21641

[6]陈大华, 叶和春, 李国凤, 刘彦. 植物类异戊二烯代谢途径的分子生物学研究进展. 植物学报, 2000, 42: 551–558

Chen D H, Ye H C, Li G F. Cloning and sequencing of HMGR gene of Solanum tubersosum and its expression pattern. Acta Bot Sin, 2000, 42: 724–727 (in Chinese with English abstract)

[7]Stermer B A, Bianchini G M, Korth K L. Regulation of HMG-CoA reductase activity in plants. J Lipid Res, 1994, 35: 1133–1140

[8]Omura T, Watanabe S, Iijima Y, Aoki K, Shibata D, Ezura H. Molecular and genetic characterization of transgenic tomato expressing 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Plant Biotechnol, 2007, 24: 107–115

[9]Luo M, Xiao Y H, Li X B, Lu X F, Deng W, Li D M, Hou L, Hu M Y, Li Y, Pei Y. GhDET2, a steroid 5α-reductase, play an important role in cotton fiber cell initiation and elongation. Plant J, 2007, 51: 419–430

[10]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743

[11]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254

[12]Ge X, Wu J. Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Sci, 2005, 168: 487–491

[13]Beasley C, Ting I P. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot, 1973, 130–139

[14]Beasley C, Ting I P. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. Am J Bot, 1974, 188–194

[15]汤章城. 植物生理学指南. 上海: 中国科学出版社, 1999. p 1

Tang Z C. The Guide of Modern Plant Physiology Experiment. Shanghai, Science Press, 1999. p 1

[16]Xia R, Li C Q, Lu W J, Du J, Wang Z H, Li J G. 3-Hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1 ) is highly associated with the cell division during the early stage of fruit development which determines the final fruit size in Litchi chinensis. Gene, 2012, 498: 28–35

[17]Suzuki M, Kamide Y, Nagata N, Seki H, Ohyama K, Kato H, Masuda K, Sato S, Kato T, Tabata S, Yoshida S, Muranaka T. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. Plant J, 2004, 37: 750–761

[18]Bach T J, Lichtenthaler H K. Mevinolin:a highly specific inhibitor of microsomal 3-hydroxy-3-methylglutaryl-coenzyme Areductase of radish plants. Z Naturforsch, 1982, 37: 46–50

[19]Opitz S, Nes W D, Gershenzon J. Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedling. Phtochemistry, 2014, 98: 110–119

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!