欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (09): 1435-1444.doi: 10.3724/SP.J.1006.2015.01435

• 耕作栽培·生理生化 • 上一篇    下一篇

基于生物量的油菜主茎叶片形态参数模拟研究

张文宇, 张伟欣, 葛道阔, 曹宏鑫*, 刘岩, 宣守丽, 傅坤亚, 冯春焕, 陈魏涛   

  1. 江苏省农业科学院农业经济与信息研究所 / 数字农业工程技术研究中心, 江苏南京 210014
  • 收稿日期:2014-12-01 出版日期:2015-09-12 网络出版日期:2015-09-12
  • 通讯作者: 曹宏鑫, E-mail:caohongxin@hotmail.com, Tel: 025-84391210
  • 基金资助:
    本研究由国家自然科学基金项目(31171455, 31201127, 31471415), 国家高技术研究发展计划(863计划)项目子课题(2013AA102305-1)和江苏省农业科技自主创新资金项目[CX(12)5060]和江苏省农业科学院基本科研业务专项[ZX(15)2008, ZX(15)4001]资助

Modeling of Biomass-Based Leaf Morphological Parameters on Main Stem for Rapeseed (Brassica napus L.)

ZHANG Wen-Yu, ZHANG Wei-Xin, GE Dao-Kuo, CAO Hong-Xin*, LIU Yan, XUAN Shou-Li, FU Kun-Ya, FENG Chun-Huan, CHEN Wei-Tao   

  1. Institute of Agricultural Economics and Information / Engineering Research Center for Digital Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2014-12-01 Published:2015-09-12 Published online:2015-09-12

摘要: 为了定量油菜主茎叶片形态参数与生物量间的关系, 本研究基于2011—2012年和2012—2013年不同品种、移栽密度及施肥水平油菜田间试验, 通过观测不同品种和处理油菜叶片长、最大叶宽和叶柄长等形态参数, 并分析了上述参数与叶片生物量的关系, 构建了基于生物量的油菜叶长、最大叶宽和叶柄长模型。结果表明, 在全生育期, 不同品种和处理下油菜主茎叶长和最大叶宽均与叶片生物量的平方根成正比, 而叶柄长与叶长成正比。所建模型利用截距为0的线性函数描述叶长和最大叶宽随生物量平方根的变化, 用直线式描述叶柄长随叶长的变化。经独立试验资料检验, 除宁油16叶柄长模型误差较大外, 所建模型对其余形态参数均具有较好预测性, 为通过生物量将油菜生长模型与形态结构模型结合提供了机理性较强的方法, 为建立油菜功能-结构模型奠定了基础。

关键词: 油菜, 生物量, 叶片形态, 模拟模型

Abstract: To quantify the relationships between main stem leaf morphological parameters for rapeseed and the corresponding leaf biomass, we conducted field experiments on varieties, transplanting densities, and fertilizer in 2011 to 2012, and 2012 to 2013 seasons. The biomass-based leaf morphological parameter models for rapeseed on main stem were constructed through observing leaf length, maximum leaf width, and leaf petiole length under various treatments, and analyzing the relationships between leaf morphological parameters and the corresponding leaf biomass. Because both of the leaf length and leaf width were positively proportional to the square root of the corresponding leaf biomass, meanwhile the leaf petiole length was positively proportional to the corresponding leaf length, the changes in the leaf length, the maximum leaf width, and the leaf petiole length with the changed of square root of the corresponding leaf biomass for different treatments could be described with linear function. The biomass-based leaf morphological parameter models were validated using independent experiment data, and the results showed that the model revealed satisfactory predictions of leaf length, leaf width, and leaf petiole length, except the simulation for leaf petiole length of Ningyou 16. The research provides a mechanistic method for linking the rapeseed growth model with the morphological model using organ biomass, and lays a foundation for the establishment of functional-structural plant models of rapeseed.

Key words: Rapeseed (Brassica napus L.), Biomass, Leaf morphology, Simulation model

[1] 王汉中. 我国油菜产需形势分析及产业发展对策. 中国油料作物学报, 2007, 29: 101-105 Wang H Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China. Chin J Oil Crop Sci , 2007, 29: 101-105 (in Chinese with English abstract)
[2] 张树杰, 李玲, 张春雷. 播种期和种植密度对冬油菜籽粒产量和含油率的影响. 应用生态学报, 2012, 23: 1326-1332 Zhang S J, Li L, Zhang C L. Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape. Chin J Appl Ecol , 2012, 23: 1326-1332 (in Chinese with English abstract)
[3] 张伟欣, 曹宏鑫, 朱艳, 刘岩, 张文宇, 陈昱利, 傅坤亚. 油菜作物模型研究进展. 中国农业科技导报, 2014, 16(1): 82-90 Zhang W X, Cao H X, Zhu Y, Liu Y, Zhang W Y, Chen Y L, Fu K Y. Research progress on rapeseed crop model. J Agric Sci Technol , 2014, 16(1): 82-90 (in Chinese with English abstract)
[4] Pinto A C, Guarieiro L L N, Rezende M J C, Ribeiro N M, Torres E A, Lopes W A, de P Pereira P A, de Andrade J B. Biodiesel: an overview. J Brazil Chem Soc , 2005, 16: 1313-1330
[5] 曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优, 陈煜利. 作物模型发展探讨. 中国农业科学, 2011, 44: 3520-3528 Cao H X, Zhao S L, Ge D K, Liu Y X, Liu Y, Sun J Y, Yun Y B, Zhang Z Y, Chen Y L. Discussion on development of crop models. Sci Agric Sin , 2011, 44: 3520-3528 (in Chinese with English abstract)
[6] Perttunen J, Sievänen R, Nikinmaa E, Salminen H, Saarenmaa H, Väkevä J. LIGNUM: a tree model based on simple structural units. Ann Bot , 1996, 77: 87-98
[7] Yang H P, Kang M Z, De Reffye P, Dingkuhn M. A dynamic, architectural plant model simulating resource-dependent growth. Ann Bot , 2004, 93: 591-602
[8] Lopez G, Favreau R R, Smith C, DeJong M T. L-PEACH: a computer-based model to understand how peach trees grow. Hort Technol , 2010, 20: 983-990
[9] Watanabe T, Hanan J S, Room P M, Hasegawa T, Nakagawa H, Takahashi W. Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann Bot , 2005, 95: 1131-1143
[10] 刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林. 基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42: 4093-4099 Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D C, Sun J Y, Yun Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade based on biomass. Sci Agric Sin , 2009, 42: 4093-4099 (in Chinese with English abstract)
[11] 刘永霞, 岳延滨, 刘岩, 曹宏鑫, 葛道阔, 魏秀芳. 基于生物量的水稻根系生长动态模型. 江苏农业学报, 2011, 27: 704-709 Liu Y X, Yun Y B, Liu Y, Cao H X, Ge D K, Wei X F. Biomass-based dynamic model for rice root system. Jiangsu J Agric Sci , 2011, 27: 704-709 (in Chinese with English abstract)
[12] Cao H X, Liu Y, Liu Y X, Hanan J S, Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Biomass-based rice ( Oryza sativa L.) aboveground architectural parameter models. J Integr Agric , 2012, 11: 1621-1632
[13] Evers J B, Vos J, Yin X, Romero P, van der Putten P E L, Struik P C. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation. J Exp Bot , 2010, 61: 2203-2216
[14] Guo Y, Ma Y T, Zhan Z G, Li B G, Dingkuhn M, Luquet D, de Reffye P. Parameter optimization and field validation of the Functional-Structural model GREENLAB for maize. Ann Bot , 2006, 97: 217-230
[15] Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agric Syst , 2003, 75: 47-77
[16] Kiniry J R, Major D J, Izaurralde R C, Williams J R, Gassman P W, Morrison M, Bergentine R, Zentner R P. EPIC model parameters for cereal, oilseed, and forage crops in the northern Great Plains region. Can J Plant Sci , 1995, 75: 679-688
[17] Petersen C T, Jørgensen U, Svendsen H, Hansen S, Jensen H E, Nielsen N E. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. Eur J Agron , 1995, 4: 77-89
[18] Habekotté B. A model of the phenological development of winter oilseed rape ( Brassica napus L.). Field Crops Res , 1997, 54: 127-136
[19] Gabrielle B, Denoroy P, Gosse G, Justes E, Andersen M N. Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Res , 1998, 57: 95-111
[20] Robertson M J, Holland J F, Kirkegaard J A, Smith C J. Simulation Growth and Development of Canola in Australia. Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 1999
[21] Zhang C L, Li G M, Cao H X. Simulating Growth and Development of Winter Rape in Yangtze River Valley. Proceedings of the 11th International Rapeseed Congress, 6-10, July, 2003. p 835
[22] 刘洪, 金之庆. 油菜发育动态模拟模型. 应用气象学报, 2003, 14: 634-640 Liu H, Jin Z Q. A phenological model to simulate rape development. J Appl Meteorol Sci , 2003, 14: 634-640 (in Chinese with English abstract)
[23] 廖桂平, 官春云. 甘蓝型冬油菜( Brassica napus )干物质积累、分配与转移的特性研究. 作物学报, 2002, 28: 52-58 Liao G P, Guan C Y. Study on characteristics of dry matter accumulation, distribution and transfer of winter rapeseed ( Brassica napus ). Acta Agron Sin , 2002, 28: 52-58 (in Chinese with English abstract)
[24] 刘铁梅, 胡立勇, 赵祖红, 曹凑贵, 曹卫星, 严美春. 油菜发育过程及生育期机理模型的研究: I. 模型的描述. 中国油料作物学报, 2004, 26(1): 28-32 Liu T M, Hu L Y, Zhao Z H, Cao C G, Cao W X, Yan M C. A mechanistic of phasic and phenologial development in rape: I. Description of the model. Chin J Oil Crop Sci , 2004, 26(1): 28-32 (in Chinese with English abstract)
[25] 曹宏鑫, 张春雷, 李光明, 张保军, 赵锁劳, 汪宝卿, 金之庆. 油菜生长发育模拟模型研究. 作物学报, 2006, 32: 1530-1536 Cao H X, Zhang C L, Li G M, Zhang B J, Zhang S L, Wang B Q, Jin Z Q. Researches of simulation models of rape growth and development. Acta Agron Sin , 2006, 32: 1530-1536 (in Chinese with English abstract)
[26] 汤亮, 曹卫星, 朱艳. 基于生长模型的油菜管理决策支持系统. 农业工程学报, 2006, 22(11): 160-164 Tang L, Cao W X, Zhu Y. Development of growth model-based decision support system for rapeseed management. Trans CSAE , 2006, 22(11): 160-164 (in Chinese with English abstract)
[27] 廖桂平, 李锦卫, 欧中斌, 聂敏. 基于参数L-系统的油菜花朵与花序生长可视化研究. 农业工程学报, 2009, 25(4): 150-156 Liao G P, Li J W, Ou Z B, Nie M. Visual growth of flower and inflorescence of rapeseed ( Brassica napus L.) based on parametric L-system. Trans CSAE , 2009, 25(4): 150-156 (in Chinese with English abstract)
[28] 岳延滨, 朱艳, 曹宏鑫. 基于几何参数模型和OpenGL的油菜花朵可视化研究. 江苏农业学报, 2011, 27: 264-270 Yue Y B, Zhu Y, Cao H X. Models and OpenGL-based visual technology for rapeseed ( Brassica napus L.) flower. Jiangsu J Agric Sci , 2011, 27: 264-270 (in Chinese with English abstract)
[29] Zhao L L, Wen W L, Peng Y Y, Guo X Y, Lu S L, Du J J. Geometric modeling of rape ( Brassica napus L.) during seeding stage. Agric Sci Technol , 2011, (7): 1085-1087
[30] Groer C, Kniemeyer O, Hemmerling R, Kurth W, Becker H, Sorlin G B. A dynamic 3D model of rape ( Brassica napus L.) computing yield components under variable nitrogen fertilization regimes. In: 5th International Workshop on Functional- Structural Plant Models. Napier, New Zealand, November 2007, 4.1-4.3
[31] Kniemeyer O. Rule-based modelling with the XL/GroIMP software. Proceedings of 6th GWAL, April 14-16, 2004. pp 56-65
[32] Müller J, Wernecke P, Diepenbrock W. LEAFC3-N: a nitrogen-sensitive extension of the CO 2 and H 2 O gas exchange model LEAFC3 parameterised and tested for winter wheat ( Triticum aestivum L.). Ecol Model , 2005, 183: 183-210
[33] Jullien A, Mathieu A, Allirand J M, Pinet A, de Reffye P, Cournede P H, Ney B. Characterization of the interactions between architecture and source-sink relationships in winter oilseed rape ( Brassica napus ) using the GreenLab model. Ann Bot , 2011, 107: 765-779
[34] Jullien A, Allirand J M, Mathieu A, Andrieu B, Ney B. Variations in leaf mass per area according to N nutrition, plant age, and leaf position reflect ontogenetic plasticity in winter oilseed rape ( Brassica napus L.). Field Crops Res , 2009, 114: 188-197
[35] Cao H X, Zhang W Y, Zhang W X, Liu Y, Liu Y X, Hanan J S, Chen Y L, Yue Y B, Zhang Z Y, Ge D K. Biomass-based rapeseed ( Brassica napus L.) leaf geometric parameter model. Proceedings of the 7th International Conference on Functional-Structural Plant Models, 9-14 June, 2013. p 26
[36] 张伟欣. 基于生物量的油菜植株地上部形态结构模型研究. 南京农业大学硕士学位论文, 江苏南京, 2013 Zhang W X. Biomass-Based Rapeseed ( Brassica napus L.) Aboveground Morphological Structure Model. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2013 (in Chinese with English abstract)
[37] Cao H X, Hanan J S, Liu Y, Liu Y X, Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Comparison of crop model validation methods. J Integr Agric , 2012, 11: 1274-1285
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[10] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[11] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[12] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[15] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!