欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1758-1766.doi: 10.3724/SP.J.1006.2015.01758

• 研究简报 • 上一篇    下一篇

甘蓝型油菜BnTT3基因的表达与eQTL定位分析

卢坤1,2,**,曲存民1,2,**,李莎1,2,赵会彦1,2,王瑞1,2,徐新福1,2,梁颖1,2,李加纳1,2,*   

  1. 1 西南大学农学与生物科技学院, 重庆 400715; 2 重庆市油菜工程技术研究中心, 重庆 400715
  • 收稿日期:2015-01-19 修回日期:2015-07-20 出版日期:2015-11-12 网络出版日期:2015-08-12
  • 通讯作者: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68250642
  • 基金资助:

    本研究由国家自然科学基金项目(31401412, U1302266), 国家科技支撑计划项目(2013BAD01B03-12), 重庆市主要农作物良种创新工程项目(cstc2012ggB80008), 国家现代农业产业技术体系建设专项(CARS-13), 国家高技术研究发展计划(863计划)项目(2013AA102602), 111人才引智基地建设项目(B12006)和中央高校基本科研业务费专项资金(XDJK2012A009, 2362015xk05)资助。

Expression Analysis and eQTL Mapping of BnTT3 Gene in Brassica napus L.

LU Kun1,2,**,QU Cun-Min1,2,**,LI Sha1,2,ZHAO Hui-Yan1,2,WANG Rui1,2,XU Xin-Fu1,2,LIANG Ying1,2,LI Jia-Na1,2,*   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; 2 Chongqing Rapeseed Engineering Research Center, Chongqing 400715, China
  • Received:2015-01-19 Revised:2015-07-20 Published:2015-11-12 Published online:2015-08-12
  • Contact: 李加纳, E-mail: ljn1950@swu.edu.cn, Tel: 023-68250642

摘要:

类黄酮途径中,TT3编码的4-二氢黄铜醇还原酶是参与原花色素和花青素合成的关键酶。为了明确该基因可能的上游调控网络,利用黄籽母本GH06和黑籽父本ZY821构建的遗传图谱,以BnTT3基因在高世代重组自交系群体中随机选取的94个株系花后40 d种子的表达量作为性状,采用复合区间作图法进行eQTL分析。结果共检测到5个表达量相关的eQTL,分别位于A03A08A09C01染色体,单个eQTL解释表型变异的5.22%~24.05%A09染色体上存在2个主效eQTL,单个eQTL分别解释24.05%16.55%的表型变异,分别位于标记KS10260~KBrB019I24.15B055B21-5~KS30880之间,微效eQTL分布于A03A08C01染色体上。A09染色体上的2个主效eQTL区间(包含200 kb侧翼序列)与拟南芥、白菜、甘蓝和芸薹族近缘物种基因组同源区段具有很好的共线性关系。基因注释结果表明检测到的eQTL均为trans-QTL2个主效eQTL区段共包含78个基因,包括MYB51MYB52bZIP5转录因子,可能为BnTT3基因的上游直接调控因子,对这些基因功能的深入分析将有助于阐明甘蓝型油菜黄籽性状形成的分子调控机制,为黄籽候选基因的克隆筛选奠定基础。

关键词: 甘蓝型油菜, 种子, TT3, 重组自交系, 表达数量性状位点

Abstract:

In flavonoid biosynthesis pathway, the key enzyme dihydroflavonol 4-reductase (DFR) involved in the proanthocyanidin and anthocyanin biosynthesis pathway is encoded by TRANSPARENT TESTA 3 (TT3) gene. The objective of this research was to identify the upstream regulatory networks of BnTT3 using the composite interval mapping method (CIM). Hence, we performed an eQTL analysis for the transcript-level variation of BnTT3 gene in seeds at 40 days after flower (DAF) in 94 recombinant inbred lines (RILs) derived from a cross between the yellow-seeded female parent GH06 and black-seeded male parent ZY821. Five eQTLs for expression levels of BnTT3 were detected on four different chromosomes (A03, A08, A09, and C01) in B. napus, accounting for 5.22% to 24.05% of phenotypic variation. Two major eQTLs were found and located among the markers KS10260–KBrB019I24.15 and B055B21-5–KS30880 of chromosome A09, with explained 24.05% and 16.55% of phenotypic variation, respectively. Three minor eQTLs were also detected to be located on chromosomes A03, A08 and C01. The flanking sequences with 200 kb of two major eQTLs on chromosome A09 of B. napus showed well synteny to those of A. thaliana, Brassica rapa, Brassica oleracea and other Brassiceae relatives. Furthermore, the annotation results showed that they belong to the trans-QTL, containing 78 genes in the two trans-QTL regions. Some transcription factors (MYB51, MYB52, and bZIP5) might be upstream regulatory factors associated with transcriptional regulation of BnTT3. Therefore, further study about these genes function will be helpful to elucidate the molecular mechanism of the seed coat colour formation, as well as lay the foundation for selecting candidate genes of seed coat colour in B. napus.

Key words: Brassica napus L., Seeds, TRANSPARENT TESTA 3, Recombinant inbred lines (RILs), Expression quantitative trait locus (eQTL)

[1]Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol, 2001, 126: 485–493



[2]Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol, 2002, 5: 218–223



[3]Lepiniec L, Debeaujon I, Routaboul J M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol, 2006, 57: 405–430



[4]Routaboul J M, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L. Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta, 2006, 224: 96–107



[5]Haughn G, Chaudhury A. Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci, 2005, 10: 472–477



[6]Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty P B, Li G. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol, 2009, 69: 553–563



[7]Padmaja L K, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi Y S, Pental D, Pradhan A K. Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet, 2014, 127: 339–347



[8]Fu F Y, Liu L Z, Chai Y R, Chen L, Yang T, Jin M Y, Ma A F, Yan X Y, Zhang Z S, Li J N. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 2007, 50: 840–854



[9]Chai Y R, Lei B, Huang H L, Li J N, Yin J M, Tang Z L, Wang R, Chen L. TRANSPARENT TESTA12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genom, 2009, 281: 109–123



[10]Stein A, Wittkop B, Liu L, Obermeier C, Friedt W, Snowdon R J. Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breed, 2013, 132: 382–389



[11]Chen A H, Chai YR, Li J N, Chen L. Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). J Biochem Mol Biol, 2007, 40: 247–260



[12]Wei Y L, Li J N, Lu J, Tang Z L, Pu D C, Chai Y R. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep, 2007, 34: 105–120



[13]Xu B B, Li J N, Zhang X K, Wang R, Xie L L, Chai Y R. Cloning and molecular characterization of a functional flavonoid 3'-hydroxylase gene from Brassica napus. J Plant Physiol, 2007, 164: 350–363



[14]Jansen R C, Nap J P. Genetical genomics: the added value from segregation. Trends Genet, 2001, 17: 388–391



[15]陈颖, 汪旭升, 许玲莉, 沈勤, 王晓冬, 陆璐. 基因表达数量性状定位的研究进展. 生命科学, 2009, 21: 38–42



Chen Y, Wang X S, Xu L L, Shen Q, Wang X D, Lu L. Advance in study of gene expression quantitative trait loci (eQTL). Chin Bull Life Sci, 2009, 21: 38–42 (in Chinese with English abstract)



[16]Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet, 2009, 10: 184–194



[17]Kliebenstein D. Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol, 2009, 60: 93–114



[18]Michaelson J J, Loguercio S, Beyer A. Detection and interpretation of expression quantitative trait loci (eQTL). Methods, 2009, 48: 265–276



[19]曲存民, 卢坤, 刘水燕, 卜海东, 付福友, 王瑞, 徐新福, 李加纳. 黄黑籽甘蓝型油菜类黄酮途径基因SNP位点检测分析. 作物学报, 2014, 40: 1914–1924



Qu C, Lu K, Liu S Y, Bu H D, Fu F Y, Wang R, Xu X F, Li J N. SNP detection and analysis of genes for flavonoid pathway in yellow- and black-seeded Brassica napus L. Acta Agron Sin, 2014, 40: 1914–1924 (in Chinese with English abstract)



[20]Li T, Jia K P, Lian H L, Yang X, Li L, Yang H Q. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem Biophys Res Commun, 2014, 454: 78–83



[21]Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Tang Z, Li J. Differential accumulation of phenolic compounds and expression of related genes in black-and yellow-seeded Brassica napus. J Exp Bot, 2013, 64: 2885–2898



[22]Wu G, Li Z, Yuhua W, Yinglong C, Changming L. Comparison of five endogenous feference Genes for specific PCR detection and quantification of Brassica napus. J Agric Food Chem, 2010, 58: 2812–2817



[23]曲存民, 付福友, 刘列钊, 王家丰, 毛丽佳, 原小燕, 谌利, 李加纳. 甘蓝型油菜胚色素成分的QTL定位. 作物学报, 2009, 35: 286–294



Qu C M, Fu F Y, Liu L Z, Wang J F, Mao L J, Yuan X Y, Chen L, Li J N. QTL mapping of embryonic pigment components in Brassica napus. Acta Agron Sin, 2009, 35: 286–294 (in Chinese with English abstract)



[24]曲存民, 付福友, 卢坤, 谢景梅, 刘晓兰, 黄杰恒, 李波, 王瑞, 谌利, 唐章林. 不同环境中甘蓝型油菜种皮木质素含量的QTL定位. 作物学报, 2011, 37: 1398–1405



Qu C M, Fu F Y, Lu K, Xie, J M, Liu X L, Huang J H, Li B, Wang R, Chen L, Tang Z L, Li J N. Identification of QTLs for lignin content of seed coat in Brassica napus L. in different environments. Acta Agron Sin, 2011, 37: 1398–1405 (in Chinese with English abstract)



[25]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185–199



[26]刘仕芸, 黄艳岚, 张树珍. 植物花青素生物合成中的调控基因. 植物生理学通讯, 2006, 42: 747–754



Liu S Y, Huang Y L, Zhang S Z. Regulatory gene of anthocyanin biosynthesis in plant. Plant Physiol Commun, 2006, 42: 747–754 (in Chinese with English abstract)



[27]沈忠伟, 许昱, 夏犇, 李建粤. 植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用. 分子植物育种, 2008, 6: 542–548



Shen Z W, Xu Y, Xia B, Li J Y. Transcription factors involved in plant flavonoid biosynthesis of secondary metabolismand its application in genetic engineering. Mol Plant Breed, 2008, 6: 542–548 (in Chinese with English abstract)



[28]Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell, 2011, 23:1795–1814



[29]Marles M, Gruber MY. Histochemical characterisation of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric, 2004, 84: 251–262



[30]叶小利, 李加纳, 唐章林, 梁颖, 谌利. 甘蓝型油菜种皮色泽及相关性状的研究. 作物学报, 2001, 27: 550–556



Ye X L, Li J N, Tang Z L, Liang Y, Chen L. Study on seed coat color and related characters of Brassica napus. Acta Agron Sin, 2001, 27: 550–556 (in Chinese with English abstract)



[31]Kim S, Binzel M L, Park S, Yoo K S, Pike L M. Inactivation of DFR (Dihydroflavonol 4-reductase) gene transcription results in blockage of anthocyanin production in yellow onions (Allium cepa). Mol Breed, 2004, 14: 253–263



[32]Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki Ki. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. Plant J, 2007, 49: 91–102



[33]Park K I, Ishikawa N, Morita Y, Choi J D, Hoshino A, Iida S. A bHLH regulatory gene in the common morning glory, Ipomoea purpurea, controls anthocyanin biosynthesis in flowers, proanthocyanidin and phytomelanin pigmentation in seeds, and seed trichome formation. Plant J, 2007, 49: 641–654



[34]Marles M, Gruber M Y, Scoles G J, Muir A D. Pigmentation in the developing seed coat and seedling leaves of Brassica carinata is controlled at the dihydroflavonol reductase locus. Phytochemistry, 2003, 62: 663–672



[35]Yan M L, Liu X J, Liu Z S, Guan C Y, Yuan M Z, Xiong X H. Cloning and expression analysis of Dihydroflavonol 4-Reductase gene in Brassica juncea. Acta Agron Sin, 2008, 34: 1–7



[36]曲存民. 甘蓝型油菜种皮色泽形成机理研究. 西南大学博士学位论文, 重庆, 2012. pp 55–62



Qu C M. Studies on the Mechanism of Formation of Seed Coat Colour in Brassica napus L. PhD Disseration of Southwest University, Chongqing, China, 2012. pp 55–62 (in Chinese with English abstract)



[37]Frerigmann H, Gigolashvili T. MYB34, MYB51 and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant, 2014, 7: 814–828



[38]Park M Y, Kang J Y, Kim S Y. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells, 2011, 31: 447–454



[39]Borevitz J O, Xia Y, Blount J, Dixon R A, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 2000, 12: 2383–2393



[40]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447–456



[41]Lewis D R, Ramirez M V, Miller N D, Vallabhaneni P, Ray W K, Helm R F, Winkel B S, Muday G K. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. Plant Physiol, 2011, 156:144–164

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 李振华, 王显亚, 刘一灵, 赵杰宏. NtPHYB1与光温信号互作调控烟草种子萌发[J]. 作物学报, 2022, 48(1): 99-107.
[10] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[11] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[12] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[15] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!