欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (04): 501-512.doi: 10.3724/SP.J.1006.2016.00501

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗Na+/H+逆转运蛋白基因的克隆与表达分析

刘峰,苏炜华,黄珑,肖新换,黄宁,凌辉,苏亚春,张华,阙友雄   

  1. 福建农林大学农业部福建甘蔗生物学与遗传育种重点实验室 / 国家甘蔗产业技术研发中心, 福建福州 350002
  • 收稿日期:2015-09-07 修回日期:2016-01-11 出版日期:2016-04-12 网络出版日期:2016-01-19
  • 通讯作者: 阙友雄, E-mail: queyouxiong@126.com
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-20),国家公益性行业(农业)科研专项(201503119)和福建省高等学校新世纪优秀人才支持计划(JA14095)资助。

Isolation and Characterization of a Na+/H+Antiporter Gene from Sugarcane

LIU Feng**,SU Wei-Hua**,HUANG Long,XIAO Xin-Huan,HUANG Ning,LING Hui,SU Ya-Chun,ZHANG Hua,QUE You-Xiong*   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University / SugarcaneResearch & Development Center, China Agricultural Technology System,Fuzhou 350002, China
  • Received:2015-09-07 Revised:2016-01-11 Published:2016-04-12 Published online:2016-01-19
  • Contact: 阙友雄, E-mail: queyouxiong@126.com
  • Supported by:

    This study was supported by the China Agriculture Research System(CARS-20), the Special Fund for Agro-Scientific Research in the Public Interest (201503119), and the Program for New Century Excellent Talents in Fujian Province University (JA14095).

摘要:

Na+/H+逆向转运蛋白基因SOS1(salt overly sensitive 1)是植物耐盐性的必需基因之一,在植物抵御盐胁迫过程中发挥十分重要的作用。本研究以小麦EST序列KJ563230为探针,利用电子克隆技术结合RT-PCR,获得一条甘蔗SOS1基因的cDNA序列,命名为ScSOS1 (GenBank登录号为KT003285)。序列分析结果表明,该基因全长1403bp,包含一个1272bp的开放阅读框,编码423个氨基酸的蛋白质。ScSOS1蛋白的相对分子质量为47.6kD,理论等电点(pI)为9.12。氨基酸序列分析表明,ScSOS1蛋白具有一个CAP-EDsuperfamily结构域。生物信息学预测显示,ScSOS1的编码蛋白为亲水性蛋白,不存在信号肽,二级结构元件多为无规则卷曲,主要参与中间代谢。实时荧光定量PCR分析表明,ScSOS1基因的表达具有组织特异性,在甘蔗叶鞘、蔗皮、蔗髓、侧芽和根中均有表达,其中在叶鞘中的表达量最高,根中的表达量最低。此外在NaCl、PEG、ABA、SA和MeJA的胁迫过程中,该基因表达均受到调控,其中受NaCl和PEG诱导后上调表达,均在24 h表达量达最高,分别约为对照组的1.5倍和4倍。推测该基因的表达与甘蔗耐盐性和抗渗透胁迫有关。

关键词: 甘蔗, SOS1基因, 电子克隆, 生物信息学, 实时荧光定量PCR

Abstract:

Salt overly sensitive 1(SOS1) gene, encoding a Na+/H+antiport protein, plays an important role in biological processes of plants against salt stress. Using a SOS1 mRNA sequence from Triticum aestivum (KJ563230) as the probe, the homologous ESTs of sugarcanewere obtainedfrom NCBI database. A sugarcane cDNA sequence of SOS1 gene was cloned by in silicocloning combined with RT-PCR,and named as ScSOS1 (GenBank accession number: KT003285). The bioinformatics analysis showed that ScSOS1 has a length of 1403bp witha complete open reading frame (ORF, 107 to 1423 bp), encoding a 423 amino acid residues of sugarcane SOS1 protein with an estimated molecular weight of 47.6 kD and a calculated isoelectric point (pI) of 9.12. The protein of ScSOS1 belongs to a conserved CAP-ED superfamily. Yet the ScSOS1 protein has no signal peptide and belongs to hydrophilic protein with the main function forintermediary metabolism. The mainly secondary structure element of ScSOS1 protein is random coil. Real-time quantitative PCR (RT-qPCR) analysis revealed that ScSOS1was tissue-specificallyexpressed in leaf sheath, bark, pulp, bud and root of sugarcane,with the highest expression in leaf sheath and the lowest in root. Besides,the expression of ScSOS1gene could beregulatedby the treatments of NaCl, PEG, ABA, SA,and MeJA,and up-regulatedby the stresses of NaCland PEG, with the highest inducible expression levels of1.5 times and 4.0 times ashigh as those of control at 24 hours, respectively. This paper suggested that ScSOS1involves in sugarcane tolerance salt and osmotic stresses. It can set up a basis for the elucidation of sugarcane salt resistancemechanism.

Key words: Sugarcane, SOS1gene, in silico cloning, Bioinformatics, Real-time quantitative PCR

[1] 赵可夫, 李法曾, 樊守金, 冯立田. 中国的盐生植物. 植物学通报,1999, 16: 201–207

Zhao K F, Li F Z,Fan S J, Feng L T. Halophytes in china.Chin BullBot, 1999, 16: 201–207 (in Chinese with English abstract)

[2] Niu X M, Bressan RA. Hasegawa P M, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995, 109: 735–742

[3] Greenway H, Munns R.Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980, 31: 149–190

[4] Meloni DA, Oliva MA, Martinez CA, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot, 2003, 49: 69–76

[5]Yeo A. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot, 1998, 49: 915–929

[6] Alberte R S, Thornber JP. Water stress effects on the content and organization of chlorophyll in mesophyll and bundle sheath chloroplasts of maize.Plant Physiol, 1977, 59: 351–353

[7] Santos CV. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves.Sci Hort, 2004, 103: 93–99

[8] 刁丰秋, 章文华. 盐胁迫对大麦叶片类囊体膜组成和功能的影响. 植物生理学报, 1997,23:105–110

Diao F Q, Zhang W H. Salt stress of barley leaf thylakoid membrane composition function. Acta Photophysiol Sin, 1997, 23: 105–110 (in Chinese with English abstract)

[9] 蒋明义, 杨文英, 徐江陈巧云. 渗透胁迫下水稻幼苗中叶绿体降解的活性氧损伤作用. 植物学报, 1994, 36: 289–295

Jiang M Y, Yang W Y, Xu J, Chen Q Y. Active oxygen damage effect of chlorophyll degradation in rice seedlings under osmotic stress. Acta Bot Sin, 1994, 36: 289–295 (in Chinese with English abstract)

[10] 吴雪霞, 张永平, 查丁石. NaCl胁迫对茄子幼苗生长和光合特性的影响. 浙江农业学报, 2010, 22: 193–197

Wu X X, Zhang Y P, Zha D S. Effect of NaCl stress on growth and photosynthetic characteristics of eggplant seedlings. Acta Agric Zhejiangensis, 2010, 22: 193–197 (in Chinese with English abstract)

[11] 郑世英, 商学芳, 王丽燕, 张秀玲. 盐胁迫对不同基因型玉米生理特性和产量的影响. 干旱地区农业研究, 2010, 28: 109–112

Zheng S Y, Shang X F, Wang L Y, Zhang X L. Changes of physiological characteristicsand yield different salt-sensitive maize under salt stress. Agric Res Arid Areas, 2010, 28: 109–112 (in Chinese with English abstract)

[12] 武俊英, 刘景辉, 李倩. 盐胁迫对燕麦幼苗生长, K+、Na+吸收和光合性能的影响. 西北农业学报, 2010, 19: 100–105

Wu J Y, Liu J H, Li Q. Effects of salt stress on oat seedling growth and selective absorption of K+ and Na+ and photosynthetic characters. Acta AgricBoreali-Occident Sin, 2010, 19: 100–105 (in Chinese with English abstract)

[13] 赵自国, 陆静梅. 植物耐盐性研究及进展. 长春师范学院学报, 2002, 21(2): 51–53

Zhao Z G, Lu J M. Progress or research in plant salt tolerance. J Chang Chun Teach Coll, 2002, 21(2): 51–53 (in Chinese with English abstract)

[14] 韩梦娴. Na+、K+、Ca2+对植物耐盐性影响的研究进展. 广东农业科学, 2009, (10): 81–83

Han M X. Research progress in plant salt tolerance on Na+, K+, Ca2+. Guangdong Agric Sci, 2009, (10): 81–83 (in Chinese)

[15] 赵祥强. 植物耐盐性分子机理研究进展. 安徽农业科学, 2009, 37: 7844–7849

Zhao X Q. Advances in studies on the molecular mechanism of plant’s salt tolerance. J Anhui AgricSci, 2009, 37: 7844–7849 (in Chinese with English abstract)

[16] 杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理. 世界科技研究与发展, 2006, 28(4): 70–76

Yang S H, Ji J, Wang G. Effects of salt stress on plant and the mechanism of salt tolerance. World Sci-tech R&D, 2006, 28(4): 70–76 (in Chinese with English abstract)

[17] 伍林涛, 杜才富, 邵明波. 植物盐胁迫耐受性研究进展. 吉林农业, 2010, (9): 51–52

Wu L T, Du Y F, Shao M B. Research progress in plant salt tolerance.Jilin Agric, 2010, (9): 51–52 (in Chinese with English abstract)

[18] Chinnusamy V, Schumaker K, Zhu J K.Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot, 2004, 55: 225–236

[19] 陈义强, 郭莺, 郭春芳, 张木清. 甘蔗斑茅属间远缘杂种后代对NaCl胁迫的响应. 热带作物学报, 2005, 26: 46–51

Chen Y Q, Guo Y, Guo C F, Zhang M Q. Analysis of the hardiness of the intergeneric hybrids between Saccharum L.and Erianthus michx subjected to NaCl stress. Chin J Trop Crops, 2005, 26: 46–51 (in Chinese with English abstract)

[20] Apes M P, Aharon G S, Snedden W A, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285: 1256–1258

[21] Waditee R, Hibino T, Nakamura T, Incharoensakdi A, Takabe T. Over expression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. ProcNatl Acad Sci USA, 2002, 99: 4109–4114

[22] Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000, 124: 941–948

[23] Shi H Z, Xiong L M, Stevenson B, Lu T G, Zhu J K. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell, 2002, 14: 575–588

[24] Shi H, Zhu J K. SOS4, a Pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol, 2002, 129: 585–593

[25] Shi H Z, Kin Y, Guo Y, Stevenson B, Zhu J K. The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell, 2003, 15: 19–32

[26] Zhu J H, Lee B H, Dellinger M, Cui X P, Zhang C Q, Wu S, Nothnagel E A, Zhu J K. A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J, 2010, 63: 128–140

[27] Yamaguchi T, Apse M P, Shi H Z, Blumwald E. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. ProcNatl Acad Sci USA, 2003, 100: 12510–12515

[28] Zhu J K. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 2003, 6: 441–445

[29] Zhang J Z, Creelman R A, Zhu J K. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol, 2004, 135: 615–621

[30]张莹. 互花米草SOS1基因和HKT1基因的克隆及耐盐转基因水稻研究. 烟台大学硕士学位论文, 山东烟台, 2009

Zhang Y. Clone SOS1, HKT1 of Spartina alterniflora and the Research of Salt-Tolerant Transgenic Rice. MSThesis of Yantai University, Yantai, China, 2009 (in Chinese with English abstract)

[31] 权庚, 张侠, 尹海波, 郭善利. 过量表达SaSOS1水稻的幼苗鉴定及生理特性分析. 河南农业科学, 2015, 44(3): 14–18

Quan G, Zhang X, Yin H B, Guo S L. Identification and physiological characterization of rice seedling overexpressing SaSOS1. J Henan Agric Sci, 2015, 44(3): 14–18 (in Chinese with English abstract)

[32] 邱生平. 水稻耐盐性的遗传分析及耐盐相关基因的克隆. 南京农业大学博士学位论文,江苏南京, 2005

Qiu S P. Genetic Analysis and Relative Gene Cloning for Salt Tolerance in Rice. PhD Dissertation of Nanjing Agricultural University, Nanjing,China, 2005 (in Chinese with English abstract)

[33] 王化波. 小麦盐胁迫应答基因的克隆及其功能研究. 中国科学院遗传与发育生物学研究所博士学位论文, 北京, 2004

Wang H B. Isolation and Characterization of Salt-Induced Gene from Wheat. PhD Dissertation of Institute of Genetics and Developmental Biology,Chinese Academy of Sciences, Beijing, China, 2004 (in Chinese with English abstract)

[34] 周玲玲, 祝建波, 曹连莆. 大叶补血草Na+/H+逆向转运蛋白基因(SOS1)的克隆与序列分析. 园艺学报, 2009, 36: 1353–1358

Zhou L L, Zhu J B, Cao L P. Cloning and sequence analysis of a Na+/H+ antiporter gene in halophyte Limonium gmelinii. Acta Hortic Sin, 2009, 36, 1353–1358 (in Chinese with English abstract)

[35] 黄珑, 苏炜华, 张玉叶, 黄宁, 凌辉, 肖新换, 阙友雄, 陈如凯. 甘蔗CIPK基因的同源克隆与表达. 作物学报, 2015, 41: 499–506

Huang L, Su W H, Zhang Y Y, Huang N, Ling H, Xiao X H, Que Y X, Chen R K. Cloning and expression analysis of CIPK gene in sugarcane.Acta AgronSin, 2015, 41: 499–506 (in Chinese with English abstract)

[36] Gandonou B, Agbangla C, Ahanhanzo C, Errabii T, Idaomar M, Abrini J, Skali-Senhaji N. In vitro culture techniques as a tool of sugarcane bud germination study under salt stress. Afr J Biotechnol, 2010, 7: 3680–3682

[37] Ashraf M, Rahmatullah, Ahmad R, Afzal M, Tahir M A, Kanwal S, Maqsood M A. Potassium and silicon improve yield and juice quality in sugarcane (Saccharum officinarum L.) under salt stress. J Agron Crop Sci, 2009, 195: 284–291

[38] 张玉叶, 黄宁, 苏炜华, 肖新换, 罗俊, 阙友雄. 甘蔗苏氨酸脱氨酶基因的克隆与表达分析. 热带作物学报, 2014, 35: 59–67

Zhang Y Y, Huang N, Su W H, Xiao X H, Luo J, Que Y X. Cloning and expression analysis of threonine deaminase gene in sugarcane. Chin J Trop Crops, 2014, 35: 059–067 (in Chinese with English abstract)

[39] Guo J L, Ling H, Wu Q B, Xu L P, Que Y X. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep-UK, 2014, 4: 7042, DOI:10.1038/srep07042

[40] 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄. 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013, 34: 2200–2208

Huang N, Zhang Y Y, Ling H, Luo J, Wu Q B, Que Y X. Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chin J Trop Crops, 2013, 34: 2200–2208 (in Chinese with English abstract)

[41] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2-??CT method. Methods, 2001, 25: 402–408

[42] Walker J M. The Proteomics Protocols Handbook. Totowa: Humana Press, 2005. pp 571–607

[43] Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 57: 105–132

[44] 杨献光, 张榜军, 刘青兰, 史文超, 梁卫红. 盐胁迫应答基因OsSOS5的生物信息学分析. 河南师范大学学报(自然科学版), 2009,37(6): 123–125

Yang X G, Zhang B J, Liu Q L, Shi W C, Liang W H. Bioinformatics analysis of salt overly sensitive 5 gene in rice (Oryza sativa). Henan Norm Univ Life Sci(Nat Sci), 2009, 37(6): 123–125 (in Chinese with English abstract)

[45] 赵祥强. 玉米Na+/H+逆向转运蛋白基因ZmSOS1的克隆与鉴定. 安徽农业科学,2009, 37: 17843–17848

Zhao X Q. Cloning and identification of a new Na+/H+ antiporter gene ZmSOS1 in maize (Zea mays L.). J Anhui Agric Sci, 2009, 37: 17843–17848 (in Chinese with English abstract)

[46] Tang R J, Liu H, Bao Y, Lv Q D, Yang L, Zhang H X. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response tosalinity stress. Plant Mol Biol, 2010, 74: 367–380

[47] 徐立新, 于伟, 袁潜华. 木榄质膜型Na+/H+逆向转运蛋白的基因克隆与序列分析. 热带作物学报, 2012, 33: 1800–1807

Xu L X, Yu W, Yuan Q H. Cloning of Na+/H+ an antiporter gene from Bruguiera gymnorrhiza (L.) LAM. Chin J Trop Crops, 2012, 33: 1800–1807 (in Chinese with English abstract)

[48]周玲玲, 祝建波, 王爱英. 过量表达大叶补草LgSOS1基因对拟南芥耐盐性的影响. 石河子大学学报(自然科学版), 2011, 29: 731–736

Zhou L L, Zhu J B, Wang A Y. Influence on salt tolerance of Arabidopsis thaliana by overexpressing LgSOS1. J Shihezi Univ(Nat Sci), 2011, 29: 731–736 (in Chinese with English abstract)

[49]王姝杰, 王法龙, 李世访, 闫淑珍. 转Na+/H+ antiporter (Nhap)基因烟草植株的获得及耐盐性鉴定. 农业生物技术学报, 2006, 14: 74–78

Wang S J, Wang F L, Li S F, Yan S Z. Overexpression of Na+/H+ antiporter (Nhap) gene improves salt tolerance in tobacco. J Agric Biotechnol, 2006, 14: 74–78 (in Chinese with English abstract)

[50]Shi H Z, Lee B H, Wu S J, Zhu J K. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol, 2003, 21: 81–85

[51]Benito B, Rodríguez-Navarro A. Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens. Plant J, 2003, 36: 382–389

[52]Wu Y X, Ding N, Zhao X, Zhao M G, Chang Z Q, Liu J Q, Zhang L X. Molecular characterization of PeSOS1: the putative Na+/H+ antiporter ofPopulus euphratica. Plant Mol Biol, 2007, 65: 1–11

[53]Garciadeblás B, Haro R, Benito B. Cloning of two SOS1 transportets from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabidopsis potassium uptake in bacteria.Plant Mol Biol, 2007, 63: 479–490

[54]Munns R, Sharp R E. Involvement of abscisic acid in controlling plant growth in soil of low water potential. Funct Plant Biol, 1993, 20: 425–437

[55]张丽, 张华新, 杨升, 冯永巍. 植物耐盐机理的研究进展. 西南林学院学报, 2010, 30(3): 82–86

Zhang L, Zhang H X, Yang S, Feng Y W. Research advances in plant salt-tolerance mechanism. JSouthwest Univ, 2010, 30(3): 82–86 (in Chinese with English abstract)

[56]Jia G L, Dai H P, Feng B L, .Zhang S Q, Zhang S W. Biochemical characteristics in broomcorn millet (Panicum miliaceum L.) seedlings under PEG simulated drought stress. Acta Bot Boreali-Occident Sin, 2008, 28: 2073–2079

[57]Hu X L, Jiang M Y, Zhang J H, Zhang A Y, Lin F, Tan M P. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants.New Phytol, 2007, 173: 27–38

[58]谢崇波, 金谷雷, 徐海明, 朱军. 拟南芥在盐胁迫环境下SOS转录调控网络的构建及分析. 遗传, 2010, 32: 639–646

Xie C B, Jin G L, Xu H M, Zhu J. Construction and analysis of SOS pathway-related transcriptional regulatory network underlying salt stress response in Arabidopsis. Hereditas(Beijing), 2010, 32: 639–646 (in Chinese with English abstract)

[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[9] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[10] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[11] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[12] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[13] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[14] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[15] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!