欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (05): 667-674.doi: 10.3724/SP.J.1006.2016.00667

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻叶片早衰突变体ospls3的生理特征和基因定位

龚盼1,**,黎坤瑜1,**,黄福灯2,韦荔全1,杨茜1,程方民1,潘刚1,*   

  1. 1浙江大学农业与生物技术学院, 浙江杭州310058; 2 浙江省农业科学院, 浙江杭州310021
  • 收稿日期:2015-09-12 修回日期:2016-01-11 出版日期:2016-05-12 网络出版日期:2016-01-19
  • 基金资助:

    本研究由国家自然科学基金项目(31271691)和国家转基因生物新品种培育重大专项(2013ZX08001-002)资助。

Physiological Characteristics and Gene Mapping of a Precocious Leaf Senescence Mutant ospls3 in Rice

GONG Pan1,**,LI Kun-Yu1,**,HUANG Fu-Deng2,WEI Li-Quan1,YANG Xi1,CHENG Fang-Min1,PAN Gang1,*   

  1. 1 College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; 2 Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
  • Received:2015-09-12 Revised:2016-01-11 Published:2016-05-12 Published online:2016-01-19
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271691) and the Major Project of China on New Varieties of GMO Cultivation (2013ZX08001-002).

摘要:

叶片衰老是作物叶片发育的最后阶段,功能叶早衰将影响作物产量和品质,因此,研究叶片早衰的分子与生理机制对于培育耐早衰优良品种具有重要意义。本研究利用60Co辐射诱变籼稻N142,获得叶片早衰突变体ospls3,其叶片早衰始于分蘖期,最先表现为叶尖变褐及叶中上部出现褐色斑点,并向叶基部蔓延而使叶片枯死。生理分析表明,野生型剑叶的叶绿素含量显著低于倒二叶和倒三叶,而突变体的含量则分别低于野生型且依次显著降低;野生型剑叶、倒二叶和倒三叶间的超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性、丙二醛(MDA)含量、O2?含量和H2O2含量基本不变,而突变体的这些活性和含量则依次显著升高;野生型剑叶、倒二叶和倒三叶的可溶性蛋白含量和过氧化氢酶(CAT)活性变化不显著,而突变体则依次降低。遗传分析表明,ospls3受1对隐性基因控制,借助图位克隆技术将该基因定位于第12染色体长臂的RM6953与RM28753之间,物理距离为294 kb,该结果为进一步克隆OsPLS3基因并研究其功能奠定了基础。

关键词: 水稻, ospls3, 叶片早衰, 生理分析, 基因定位

Abstract:

Leaf senescence is the final stage of leaf development. However, premature aging of functional leaves leads to yield reduction and quality decline. Thus, it is very important for developing novel crop germplasms with delayed leaf-senescence characteristics through investigating the molecular mechanism of leaf senescence. In this study, an ospls3 (Oryza sativa precocious leaf senescence 3) mutant, produced by 60Co γ-radiation treatment of indica cultivar N142, was identified. The symptoms of the premature senescence mutant presented firstly at tillering stage showing brown leaf tip and brown spots in top part of leaf blade, then spread rapidly to basal part of leaf blade and led leaf to die. The physiological analysis indicated that, in the ospls3 mutant, the content of chlorophyll was the highest in the flag leaf, the following was in second-top and third-top leaves, but all of them were significantly lower than those in the wild type. The contents of MDA, O2?, and H2O2 and the activities of SOD and POD among these top three leaves in the wild type maintained similar levels, which were significantly lower than those in the mutant type. The soluble protein contents and the activity of CAT had no significant difference among top three leaves in the wild type while significantly decreased in the mutant. Genetic analysis verified that the ospls3 is a recessive mutant and was mapped in a 294 kb interval between RM6953 and RM28753 on the long arm of chromosome 12, which establishes a solid foundation for further cloning and functional studies of this gene.

Key words: Rice, ospls3, Precocious leaf senescence, Physiological analysis, Gene mapping

[1]Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115–136

[2]伍泽堂. 超氧自由基与叶片衰老时叶绿素破坏的关系. 植物生理学通讯, 1991, 27: 277–279

Wu Z T. Relationship between superoxide radical and destruction of chlorophyll during leaf senescence. Plant Physiol Commun, 1991, 27: 277–279 (in Chinese with English abstract)

[3]段俊, 梁承邺, 黄毓文. 杂交水稻开花结实期间叶片衰老. 植物生理学报, 1997, 23: 139–144

Duan J, Liang C Y, Huang Y W. Studies on leaf senescence of hybrid rice at flowering and grain formation stage. Acta Phytophysiol Sin, 1997, 23: 139–144 (in Chinese with English abstract)

[4]Zhang C J, Chu H J, Chen G X, Shi D W, Zuo M, Wang J, Lu C G, Wang P, Chen L. Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. J Plant Res, 2007, 120: 209–217

[5]Inada N, Sakai A, Kuroiwa H, Kuroiwa T. Senescence program in rice (Oryza sativa L.) leaves: Analysis of the blade of the second leaf at the tissue and cellular levels. Protoplasma, 1999, 207: 222–232

[6]刘道宏. 植物叶片的衰老. 植物生理学通讯, 1983, (2): 14–19

Liu D H. Plant leaf senescence. Plant Physiol Commun, 1983, (2): 14–19 (in Chinese)

[7]Thomas H, Smart C M. Crops that stay green. Ann Appl Biol, 1993, 123: 193–219

[8]魏道智, 戴新宾, 许晓明, 张荣铣. 植物叶片衰老机理的几种假说. 广西植物, 1998, 18: 90–97

Wei D Z, Dai X B, Xu X M, Zhang R X. Several hypotheses on the mechanism of the plant leaf senescence. Guihaia, 1998, 18: 90–97 (in Chinese with English abstract)

[9]Wang Z, Wang Y, Hong X, Hu D, Liu C, Yang J, Li Y, Huang Y, Feng Y, Gong H, Li Y, Fang G, Tang H, Li Y. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice. J Exp Bot, 2015, 66: 973–987

[10]Liang C, Wang Y, Zhu Y, Tang J, Hu B, Liu L, Ou S, Wu H, Sun X, Chu J, Chu C. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013–10018

[11]Chen L, Wuriyanghan H, Zhang Y, Duan K, Chen H, Li Q, Lu X, He S, Ma B, Zhang W, Lin Q, Chen S, Zhang J. An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol, 2013, 163: 1752–1765

[12]Han M, Kim C, Lee J, Lee S, Jeon J. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cells, 2014, 37: 532–539

[13]Gao Q, Yang Z, Zhou Y, Yin Z, Qiu J, Liang G, Xu C. Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene, 2012, 498: 155–163

[14]Park S, Yu J, Park J, Li J, Yoo S, Lee N, Lee S, Jeong S, Seo H S, Koh H, Jeon J, Park Y, Paek N. The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664

[15]Jiang H, Li M, Liang N, Yan H, Wei Y, Xu X, Liu J, Xu Z, Chen F, Wu G. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197-209

[16]Lee R, Hsu J, Huang H, Lo S, Chen S G. Alkaline alpha-galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. New Phytol, 2009, 184: 596–606

[17]Jiao B, Wang J, Zhu X, Zeng L, Li Q, He Z. A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217

[18]Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J, 2009, 57: 120–131

[19]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375

[20]Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009, 60: 1110–1110

[21]Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll protein complexes during leaf senescence. Plant J, 2013, 74: 652–662

[22]Qiao Y, Jiang W, Lee J, Park B, Choi M, Piao R, Woo M, Roh J, Han L, Paek N, Seo H S, Koh H. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274

[23]Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.). Genes Genet Syst, 2012, 87: 169–179

[24]张治安, 陈展宇. 植物生理学实验技术. 长春: 吉林大学出版社, 2008. p 7

Zhang Z A, Chen Z Y. Experiment Technology of Plant Physiology. Changchun: Jilin University Press, 2008. p 7 (in Chinese)

[25]Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985, 5: 69–76

[26]Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol, 2004, 135: 1198–1205

[27]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSR) in rice (Oryza sativa L.). Mol Gen Genet, 1996, 252: 597–607

[28]李晴, 朱玉贤. 植物衰老的研究进展及其在分子育种中的应用. 分子植物育种, 2003, 1: 289–296

Li Q, Zhu Y X. The progress of plant senescence research and plant molecular breeding. Mol Plant Breed, 2003, 1: 289–296 (in Chinese with English abstract)

[29]刘贞琦, 刘振业, 马达鹏, 曾淑芬. 水稻叶绿素含量及其与光合速率关系的研究. 作物学报, 1984, 10: 57–62

Liu Z Q, Liu Z Y, Ma D T, Zeng S F. A study on the relation between chlorophyll content and photosynthetic rate of rice. Acta Agron Sin, 1984, 10(1): 57–62 (in Chinese with English abstract)

[30]林植芳, 李双顺, 林桂珠, 孙谷畴, 郭俊彦. 水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系. 植物学报, 1984, 26: 605–615

Lin Z F, Li S S, Lin G Z, Sun G C, Guo J Y. Superoxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves. Acta Bot Sin, 1984, 26: 605–615 (in Chinese with English abstract)

[31]Hideg E, Kalai T, Kos P B, Asada K, Hideg K. Singlet oxygen in plants—its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochem Photobiol, 2006, 82: 1211–1218

[32]华春, 王仁雷. 杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化. 西北植物学报, 2003, 23: 406–409

Hua C, Wang R L. Changes of SOD and CAT activities and MDA content during senescence of hybrid rice and three lines leaves. Acta Bot Boreali-Occident Sin, 2003, 23: 406–409 (in Chinese with English abstract)

[33]金杨, 周丽芬, 陈析丰, 刘峰, 马伯军. 水稻类病变突变体spl5细胞坏死机制的分析. 浙江师范大学学报(自然科学版), 2009, 32: 326–331

Jin Y, Zhou L F, Chen X F, Liu F, Ma B J. Mechanisms of cell death in rice lesion mimic mutant spl5. J Zhejiang Norm Univ (Nat Sci), 2009, 32: 326–331 (in Chinese with English abstract)

[34]汪媛. 水稻叶片衰老过程生理变化及蛋白质降解与蛋白酶活性变化研究. 扬州大学硕士学位论文, 江苏扬州, 2010

Wang Y. The Research of Physiological Changes, Protein Degradation and Protease Activity in the Process of Leaf Senescence in Rice. MS Thesis of Yangzhou University, Yangzhou, China, 2010 (in Chinese with English abstract)

[35]赵晨晨, 黄福灯, 龚盼, 杨茜, 程方民, 潘刚. 水稻叶片早衰突变体osled的生理特征与基因定位. 作物学报, 2014, 40: 1946–1955

Zhao C C, Huang F D, Gong P, Yang X, Cheng F M, Pan G. Physiological characteristics and gene mapping of a leaf early-senescence mutant osled in rice. Acta Agron Sin, 2014, 40: 1946–1955 (in Chinese with English abstract)

[36]许智宏, 薛红卫. 植物激素作用的分子机理. 上海: 上海科学技术出版社, 2012. pp 403–417

Xu Z H, Xue H W. Molecular Mechanism of Plant Hormones. Shanghai: Shanghai Scientific and Technical Publisher, 2012. pp 403–407 (in Chinese)

[37]Guo Y F, Gan S S. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 2006, 46: 601–612

[38]Zhang K, Xia X, Zhang Y, Gan S. An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J, 2012, 69: 667–678

[39]Kong Z, Li M, Yang W, Xu W, Xue Y. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388

[40]Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a CCCH-Tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol, 2013, 161: 1202–1216

[41]Pitakrattananukool S, Kawakatsu T, Anuntalabhochai S, Takaiwa F. Overexpression of OsRab7B3, a small GTP-binding protein gene, enhances leaf senescence in transgenic rice. Biosci Biotechnol Biochem, 2012, 76: 1296–1202

[42]Li Y, Chen L, Mu J, Zuo J. LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis. Plant Physiol, 2013, 163: 1059–1070

[43]Smykowski A, Zimmermann P, Zentgraf U. G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol, 2010, 153: 1321–1331

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!