欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 976-983.doi: 10.3724/SP.J.1006.2016.00976

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻早衰突变体esl6的鉴定与基因定位

杨波,夏敏,张孝波,王晓雯,朱小燕,何沛龙,何光华,桑贤春*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室, 重庆400715
  • 收稿日期:2015-11-23 修回日期:2016-03-14 出版日期:2016-07-12 网络出版日期:2016-04-13
  • 通讯作者: 桑贤春, E-mail: sangxianchun@163.com
  • 基金资助:

    本研究由中央高校基本科研业务费(XDJK2013A023)和国家自然科学基金项目(31171178)资助。

Identification and Gene Mapping of an Early Senescent Leaf Mutant esl6 in Oryza sativa L.

YANG Bo,XIA Min, ZHANG Xiao-Bo,WANG Xiao-Wen,ZHU Xiao-Yan,HE Pei-Long,HE Guang-Hua,SANG Xian-Chun*   

  1. Rice Research Institute of Southwest University, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Chongqing 400715, China
  • Received:2015-11-23 Revised:2016-03-14 Published:2016-07-12 Published online:2016-04-13
  • Contact: 桑贤春, E-mail: sangxianchun@163.com
  • Supported by:

    This study was supported by the Fundamental Research Funds for the Central Universities (XDJK2013A023) and the National Natural Science Foundation of China (31171178).

摘要:

自然衰老提高了植物对环境的适应性,是其生长发育的重要生命历程,但在农业生产中,叶片一旦早衰,将极大影响作物的产量和品质。为探索水稻叶片衰老的分子机理,我们对EMS诱变获得的一个早衰突变体esl6进行了研究。田间种植情况下,四叶期之前,esl6与野生型无明显差异,之后心叶发育成完整叶后叶尖黄化,叶基部保持正常绿色,一直持续到开花期;在灌浆期,esl6的所有叶片均不同程度地黄化早衰,且叶片上部的衰老程度明显严重于叶片基部。衰老部位细胞结构异常,主要表现为细胞膜破裂、液泡变大和细胞器不完整等,叶绿体中基质类囊体破裂,含有较多的淀粉粒。与野生型相比,esl6叶尖衰老部位的SODCATPOD活性以及超氧阴离子O2?H2O2和羟自由基·OH含量均极显著升高。早衰不仅导致esl6叶片光合色素含量和净光合速率极显著降低,还引起esl6的植株变矮和叶片变短,倒一和倒二节间极显著变短是导致esl6植株矮化的主要原因。遗传分析表明该性状受一对隐性核基因调控,利用西大1A/esl6F2分离群体,最终将调控基因定位在第9染色体203 kb的物理范围内,为下一步基因的克隆和功能研究奠定了基础,有利于水稻叶片衰老分子机理的阐释。

关键词: 水稻(Oryza sativa L.), 早衰, 基因定位

Abstract:

As an essential process in life, natural senescenceis necessary to adapt plant to environment diversity, while earlier senescence could reduce yield per unit and cause inferior quality in crop production. Therefore, it is significant to elucidate senescence molecular mechanism in plant. Here, we reported a novel rice mutant esl6 derived from the progeny of EMS-induced restorer line Jinhui10, which senescent peculiarity was observed at the early stage of life. In detail, cultivated under the paddy field, the esl6 had no obvious difference with the wild type before the 4-leaf stage, while after that the whole leaf blade of esl6 displayed chlorosis in the tip and kept normal green in the base until the flowering stage. Subsequently, all leaf blades in the esl6 demonstrated chlorosis and senescence, still more severe at the upper position. Observation by scanning electron microscope showed that cell structures in the senescent location of esl6 leaf blade were abnormal and filled with ruptured cell membranes, enlarged vacuoles and broken organelles such as the chloroplasts containing incomplete stroma thylakoids and excessive starch grains. Meanwhile, early senescence significantly lessened photosynthetic pigment contents and photosynthetic rate. The activities of SOD, CAT, and POD raised and the contents of O2?, H2O2, and ·OH increased in the esl6 leaf tip, and all of the differences led to the extremely significant level compared with those of the wild type. Additionally, the mutational plant showed semi-dwarfism and shorter leaf blades, the first and second internodes decreased to the extremely significant level in statistics. Genetic analysis suggested that the mutational traitswere controlled by a recessive nuclear gene. The gene was finally mapped on chromosome 9 with 203 kb physical distances between Indel markers Sind09-3 and Sind09-4 on the basis of F2 generation of Xida1A/esl6. All of these provide a foundation for ESL6 cloning and function analysis and then are beneficial to ascertaining the molecular mechanism of senescence in Oryza sativa L.

Key words: Rice (Oryza sativa L.), Early senescent leaf blades, Gene mapping

[1]Kim H J, Lim P O, Hong G N. Molecular regulation of leaf senescence. Curr Opin Plant Biol, 2003, 6: 79–84
[2]Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19: 47–56
[3]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, S N, Wang L F, Jiang L. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[4]Guo Y, Cai Z, Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ, 2004, 27: 521–549
[5]Liu L, Zhou Y, Zhou G, Ye R J, Zhao L N, Li X H, Lin Y J. Identification of early senescence-associated genes in rice flag. Plant Mol Biol, 2008, 67: 37–55
[6]Li Z H, Zhao Y, Liu X C, Peng J Y, Guo H W, Luo J C. LSD 2.0: an update of the leaf senescence database. Nucl Acids Res, 2014, 42(D1): 200–205
[7]Xu X B, Bai H Q, Liu C P, Chen E Y, Chen Q F, Zhuang J Y, Shen B. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS One, 2014, 9(12): e114313
[8]Schippers J H M, Schmidt R, Wagstaff C, Jing H C. Living to die and dying to live: The survival strategy behind leaf senescence. Plant Physiol, 2015, 169: 914–930
[9]Abdelkhalik A F, Nomura R S K, Ikehashi H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet, 2005, 110: 1226–1235
[10]Yoo S C, Cho S H, Zhang H, Paik H C, Lee C H, Li J, Yoo J H, Lee B W, Koh H J, Seo H S, Paek N C. Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol Cells, 2007, 24: 83–94
[11]Wu H B, Wang B, Chen L Y , Liu L G, Chen L T. Characterization and fine mapping of the rice premature senescence mutant ospse1. Theor Appl Genet, 2013, 126: 1897–1907
[12]Li Z, Zhang Y X, Liu L, Liu Q, Bi Z Z, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300–307
[13]Yan W Y, Ye S H, Jin Q S, Zeng L J, Peng Y, Yan D W, Yang W B, Yang D L, He Z H, Dong Y J, Zhang X M. Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. J Genet Genomics, 2010, 37: 47–55
[14]Wang J, Wu S J, Zhou Y, Zhou L H, Xu J F, Hu J, Fang Y X, Gu M H, Liang G H. Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). Chin Sci Bull, 2006, 51: 2986–2992
[15]张涛, 孙玉莹, 郑建敏, 程治军, 蒋开锋, 杨莉, 曹应江, 游书梅, 万建民, 张建奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位. 作物学报, 2014, 40: 2070–2080
Zhang T, Sun Y Y, Zheng L M, Cheng Z J, Jiang K F, Yang L, Cao Y J, You S M, Wan J M, Zhang J K. Genetic analysis and fine mapping of a premature leaf senescence mutant in rice (Orzya sativa L.). Acta Agron Sin. 2014, 40: 2070–2080 (in Chinese with an English abstract)
[16]Li F Z, Hu G C, Fu Y P, Si H M, Bai X M, Sun Z X. Genetic analysis and high-resolution mapping of a premature senescence gene Pse(t) in rice (Oryza sativa L.). Genome, 2005, 48: 738–746
[17]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and gene mapping of a dominant presenescing leaf gene PSL3 in rice (Oryza sativa L.). Chin Sci Bull, 2010, 55: 2517–2521
[18]Yang Y L, Rao Y C, Liu H J, Fang Y X, Dong G J, Huang L C, Leng Y J, Guo L B, Zhang G H, Hu J. Characterization and fine mapping of an early senescence mutant (es-t) in Oryza sativa L. Chin Sci Bull, 2011, 56: 2437–2443
[19]徐芳芳, 桑贤春, 任德勇, 唐彦强, 胡宏伟, 杨正林, 赵芳明, 何光华. 水稻早衰突变体esl2的遗传分析和基因定位. 作物学报, 2012, 38: 1347–1353
Xu F F, Sang X C, Ren D Y, Tang Y Q, Hu H W, Yang Z L, Zhao F M, He G H. Genetic analysis and gene mapping of early senescence leaf mutant esl2 in rice. Acta Agron Sin, 2012, 38: 1347–1353 (in Chinese with an English abstract)
[20]吕典华, 宗学凤, 王三根, 凌英华, 桑贤春, 何光华. 两个水稻叶色突变体的光合特性研究. 作物学报, 2009, 35: 2304–2308.
Lv D H, Zong X F, Wang S G, Ling Y H, Sang X C, He G H. Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin, 2009, 35: 2304–2308 (in Chinese with an English abstract)
[21]Wellburn A R. The spectra determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307–313
[22]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[23]王晓雯, 蒋钰东, 廖红香, 杨波, 邹帅宇, 朱小燕, 何光华, 桑贤春. 水稻白穗突变体wp4的鉴定与基因精细定位. 作物学报, 2015, 41: 838–844.
Wang X W, Jiang Y D, Liao H X, Yang B, Zou S Y, Zhu X Y, He G H, Sang X C. Identification and gene fine mapping of white panicle mutant wp4 in Oryza sativa. Acta Agron Sin, 2015, 6: 838–844 (in Chinese with an English abstract)
[24]Panaud O, Chen X, Mccouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol General Genet, 1996, 252: 597–607
[25]Sulpice R, Pyl E T, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques M C, Korff M V, Steinhauser M C, Keurentjes J J B, Guenther M, Hoehne M, Selbig J, Fernie A R, Altmann T, Stitt M. Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA, 2009, 106: 10348–10353
[26]Samojedny D, Orzechowski S. New look at starch degradation in Arabidopsis thaliana L. chloroplasts. Postepy Biochem, 2007, 53:74–83
[27]Yandeau-Nelson M D, Laurens L, Shi Z, Xia H, Smith A M, Guiltinan M J. Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Plant Physiol, 2011, 156: 479–490
[28]Lin A H, Wang Y Q, Tang J Y, Xue P, Li C L, Liu L C, Hu B, Yang F Q, Loake G J, Chu C C. Nitric oxide and protein S-Nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol, 2012, 158: 451–464
[29]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[30]Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388
[31]Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013–10018
[32]Sakuraba Y, Piao W, Lim J H, Han S H, Kim Y S, An G, Paek N C: Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol, 2015, 56: 2325–2339
[33]Schippers J H M. Transcriptional networks in leaf senescence. Curr Opin Plant Biol, 2015, 27: 77–83
[34]Sun S J, Guo S Q, Yang X, Bao Y M, Tang H J, Sun H, Huang J, Zhang H S. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot, 2010, 61(10): 2807–2818
[35]Hu X M, Qian Q, Xu T, Zhang Y, Dong G J, Gao T, Xie Q, Xue Y B. The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice. PLoS Genet, 2013, 9(3): e1003391
[36]Fang H M, Meng Q L, Xu J W, Tang H J, Tang S Y, Zhang H S, Huang J. Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol, 2015, 87: 441–458
[37]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[38]Lepistö A, Kangasjärvi S, Luomala E M, Brader G, Sipari N, Keränen M, Keinänen M, Rintamäki E. Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol, 2009, 149: 1261–1276

[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!