欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 984-989.doi: 10.3724/SP.J.1006.2016.00984

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦未减数配子基因的连锁标记及染色体区段检测

寇春兰,赵来宾,刘梦,郝明,甯顺腙,袁中伟,刘登才,张连全*   

  1. 四川农业大学小麦研究所四川成都 611130
  • 收稿日期:2015-11-04 修回日期:2016-03-14 出版日期:2016-07-12 网络出版日期:2016-03-08
  • 通讯作者: 张连全, E-mail: zhanglianquan1977@126.com, Tel: 028-82650313
  • 基金资助:

    本研究由国家自然科学基金项目(31271723, 31201210), 四川省杰出青年基金项目(2011JQ0016)和四川省教育厅科研项目(14ZA0012)资助。

Detection of the Molecular Marker and Chromosomal Segment linked to Unreduced Gamete Gene in Common Wheat

KOU Chun-Lan,ZHAO Lai-Bin,LIU Meng,HAO Ming,NING Shun-Zong,YUAN Zhong-Wei,LIU Deng-Cai,ZHANG Lian-Quan*   

  1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, China
  • Received:2015-11-04 Revised:2016-03-14 Published:2016-07-12 Published online:2016-03-08
  • Contact: 张连全, E-mail: zhanglianquan1977@126.com, Tel: 028-82650313
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271723 and 31201210), Sichuan Provincial Youth Fund (2011JQ0016), and the Scienti?c Research Foundation of the Education Department of Sichuan Province (14ZA0012).

摘要:

六倍体普通小麦(Triticumaestivum L., AABBDD, 2n=42)由四倍体小麦(T. turgidum, AABB, 2n=28)与节节麦(Aegilops tauschii Cosson, DD, 2n=14)天然杂交,然后通过染色体自动加倍形成。加倍过程主要受四倍体小麦未减数配子基因控制,且不同四倍体小麦存在不同的遗传效应。本研究利用位于3B染色体上未减数配子基因QTug.sau-3B的连锁SSR标记Xgpw1146和高通量DArTseq分子标记,筛选出可能转入四倍体小麦未减数配子基因的人工合成小麦改良后代。在105份改良材料中检测出17份具有四倍体小麦的Xgpw1146等位位点,表明四倍体小麦的未减数配子基因可能转入了这17份材料。利用DArTseq高通量标记技术分析人工合成小麦SHW-L1的88份改良后代,发现含四倍体小麦Xgpw1146等位位点的材料均具有来自SHW-L1、且可能包含Xgpw1146的一个染色体区段,表明未减数配子基因临近区域以一个区段传递到改良后代。这些人工合成小麦改良材料在加倍单倍体育种中有重要的应用潜力。

关键词: 异源多倍体, 人工合成小麦, 未减数配子

Abstract:

Hexaploid common wheat (Triticum aestivum L., AABBDD, 2n=42) arose fromspontaneous chromosome doubling of the hybrid between T. turgidum and Aegilops tauschii Cosson. The process of chromosomes doubling is mainly determined by unreduced gametes (UG)genes in T. turgidum. The genetic effects on the UG production may vary among T. turgidum lines. In this study, a SSR marker close to the UG geneQTug.sau-3B(Xgpw1146) and high throughput DArTseq genotyping technique were used to screen the UG gene in common wheat lines transferred from T. turgidum via synthetic hexaploid wheat (SHW) as a bridge. Out of the analyzed 105 SHW-derived elite lines, 17 had the Xgpw1146allele from T. turgidum, indicating that the UG gene was probably transferred into these wheat lines. According to the DArTseq genotyping data on 88 lines derived from the synthetic hexaploid wheat SHW-L1, all these lines with the T. turgidumXgpw1146allele contained a chromosomal segment of SHW-L1,probably covering the Xgpw1146 locus. This indicatesthat the adjacent region of the UG gene as a chromosomal segment was transferred into wheat lines. These SHW-derived lines have important application potential on wheat doubled haploid breeding.

Key words: Allohexaploid, Synthetic wheat, Unreduced gamete

[1]Harlan J R, deWet J M J. On Ö. Winge and a Prayer: The origins of polyploidy. Bot Rev, 1975, 41: 361–390
[2]Jenczewski E, Alix K. From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. Crit Rev Plant Sci, 2004, 23: 21–45
[3]Ramanna M S, Jacobsen E. Relevance of sexual polyploidization for crop improvement:a review. Euphytica, 2003, 133: 3–8
[4]Zhang L, Zhang L, Luo J, Chen W, Hao M, Liu B, Yan Z, Zhang B, Zhang H, Zheng Y, Liu D, Yen Y. Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. J Genet Genomics, 2011, 2: 89–94
[5]Forster B P, Heberle-Bors E, Kasha K J, Touraev A. The resurgence of haploids in higher plants. Trends Plant Sci, 2007, 12: 368–375
[6]Palmer C E, Keller W A. Challenges and limitations to the use of haploidy in crop improvement. In: Palmer CE, Keller WA, & Kasha KJ eds. Biotechnology in Agriculture and Forestry, Haploids in Crop Improvement II. Springer & Berlin Heidelberg 2005. pp 295–303
[7]Jauhar P P, Xu S S, Baenziger P S. Haploidy in cultivated wheats: Induction and utility in basic and applied research. Crop Sci, 2009, 49: 737–755
[8]Niemirowicz-Szczytt K. Excessive homozygosity in doubled haploids — advantages and disadvantages for plant breeding and fundamental research. Acta Physiol Plant, 1997, 19: 155–167
[9]Feldman M. Origin of cultivated wheat. In: Bonjean AP & Angus WJ eds. The World Wheat Book, A History of Wheat Breeding. Lavoisier Publishing & Paris, 2001. pp 1–56.
[10]Zhang L Q, Yang Y, Zheng Y L, Liu D C. Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod, 2007, 20: 159–166
[11]Xu S J, Joppa L R. Mechanisms and inheritance of first division restitution in hybrids of wheat, rye, and Aegilops squarrosa. Genome, 1995, 38: 607–615
[12]Fukuda K, Sakamoto S. Cytological studies on unreduced male gamete formation in hybrids between tetraploid emmer wheats and Aegilops squarrosa L. Jpn J Breed, 1992, 42: 255–266
[13]Xu S J, Joppa L R. First-division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant Breed, 2000, 119: 233–241
[14]Zhang L, Chen Q, Yuan Z, Xiang Z, Zheng Y, Liu D. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. J Genet Genomics, 2008, 35: 617–623
[15]Matsuoka Y, Nasuda S. Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet, 2004, 109: 1710–1717
[16]Xu S, Dong Y. Fertility and meiotic mechanisms of hybrids between chromosome autoduplication tetraploid wheats and Aegilops species. Genome, 2011, 35: 379–384
[17]Zhang L Q, Liu D C, Zheng Y L, Yan Z H, Dai S F, Li Y F, Jiang Q, Ye Y Q, Yen Y. Frequent occurrence of unreduced gametes in Triticum turgidum–Aegilops tauschii hybrids. Euphytica, 2010, 172: 285–294
[18]Wang C J, Zhang L Q, Dai S F, Zheng Y L, Zhang H G, Liu D C. Formation of unreduced gametes is impeded by homologous chromosome pairing in tetraploid Triticum turgidum x Aegilops tauschii hybrids. Euphytica, 2010, 175: 323–329
[19]De Storme N, Geelen D. Sexual polyploidization in plants – cytological mechanisms and molecular regulation. New Phytol, 2013, 198: 670–684
[20]Hao M, Luo J, Zeng D, Zhang L, Ning S, Yuan Z, Yan Z, Zhang H, Zheng Y, Feuillet C, Choulet F, Yen Y, Zhang L, Liu D. QTug. sau-3B is a major quantitative trait locus for wheat hexaploidization. Genes Genom Genet, 2014, 4: 1943–1953
[21]Liu D, Zhang H, Zhang L, Yuan Z, Hao M, Zheng Y. Distant hybridization: a tool for interspecific manipulation of chromosomes. In: Pratap A & Kumar J eds. Alien Gene Transfer in Crop Plants. Springer & New York, 2014. pp 25–42
[22]Zeng D Y, Hao M, Luo J T, Zhang L Q, Yuan Z W, Ning S Z, Zheng Y L, Liu D C. Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependent meiotic nonreduction. J Genet, 2014, 93: 531–534
[23]Yang Y W, Zhang L Q, Yen Y, Liu D C. Cytological evidence on meiotic restitution in pentaploid F1 hybrids between synthetic hexaploid wheat and Aegilops variabilis. Caryologia, 2010, 63: 354–358
[24]Yan Z, Wan Y, Liu K. Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chin Sci Bull, 2002, 47: 220–225
[25]Zhang L, Luo J T, Hao M, Zhang L Q, Yuan Z W, Yan Z H, Liu Y X, Zhang B, Liu B L, Liu C J, Zhang H G, Zheng Y L, Liu D C. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome. BMC Genet, 2012, 13: 69
[26]刘登才, 张连全, 郝明, 罗江陶, 郑有良, 袁中伟, 颜泽洪, 代寿芬. 2014. 小麦未减数配子基因的分子标记及其应用. 国家发明专利, ZL201210293612.5.
Liu D C, Zhang L Q, Hao M, Luo J T, Zheng Y L, Yuan Z W, Yan Z H, Dai S F. 2014. Molecular Markers of Wheat Unreduced Gametes and Its Application. China patent, ZL 2012 1 0293612.5 (in Chinese).

[1] 刘登才, 张连全, 郝明, 黄林, 甯顺腙, 袁中伟, 姜博, 颜泽洪, 伍碧华, 郑有良. 小麦族的基因组显性及其育种学意义[J]. 作物学报, 2020, 46(10): 1465-1473.
[2] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[3] 李朝苏,吴晓丽,汤永禄,杨武云,吴元奇,吴春,马孝玲,李式昭. 四川近十年小麦主栽品种的品质状况[J]. 作物学报, 2016, 42(06): 803-812.
[4] 李俊, 魏会廷, 胡晓蓉, 李朝苏, 汤永禄, 刘登才, 杨武云. 川麦42中源于人工合成小麦的一个高产位点鉴定[J]. 作物学报, 2011, 37(02): 255-262.
[5] 李俊,魏会廷,杨粟洁,李朝苏,汤永禄,胡晓蓉,杨武云. 川麦42的1BS染色体臂对小麦主要农艺性状的遗传效应[J]. 作物学报, 2009, 35(12): 2167-2173.
[6] 廖杰;魏会廷;李俊;杨玉敏;曾云超;彭正松;杨武云. 川麦42遗传背景中人工合成小麦导入位点的SSR标记检测[J]. 作物学报, 2007, 33(05): 703-707.
[7] 李根英;夏先春;张明;张勇;何中虎;孙其信. CIMMYT新型人工合成小麦Pina和Pinb基因等位变异[J]. 作物学报, 2007, 33(02): 242-249.
[8] 蔡得田;袁隆平;卢兴桂. 二十一世纪水稻育种新战略[J]. 作物学报, 2001, 27(01): 110-116.
[9] 许树军;董玉琛. 波斯小麦×节节麦杂种F_1直接形成双二倍体的细胞遗传学研究[J]. 作物学报, 1989, 15(03): 251-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!