[1] Atkinson N J, Urwin P E. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot, 2012, 63: 3523–3543
[2] 李鹏, 黄耿青, 李学宝. 植物NAC转录因子. 植物生理学通讯, 2010, 46: 294–300
Li P, Huang G Q, Li X B. Plant NAC transcription factors. Plant Physiol Mol Biol, 2010, 46: 294–300 (in Chinese with English abstract)
[3] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841–857
[4] 柳展基, 邵凤霞, 唐桂英. 植物NAC转录因子的结构功能及其表达调控研究进展. 西北植物学报, 2007, 27: 1915–1920
Liu Z J, Shao F X, Tang G Y. The research progress of structure, function and regulation of plant NAC transcription factors. Acta Bot Boreal-Occident Sin, 2007, 27(9): 1915–1920 (in Chinese with English abstract)
[5] Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore J D, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A, Beynon J, Wild D L, Denby K J, Ott S, Buchanan-Wollaston V. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J, 2013, 75: 26–39
[6] Guan Q, Yue X, Zeng H, Zhu J. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermo tolerance in Arabidopsis. Plant Cell, 2014, 26: 438–453
[7] Bu Q, Jiang H, Li C B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res, 2008, 18: 756–767
[8] Jiang H, Li H, Bu Q, Li C. The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response. Plant Signal Behav, 2009, 4: 464–466
[9] Christianson J A, Wilson I W, Llewellyn D J, Dennis E S. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment. Plant Physiol, 2009, 149: 1724–1738
[10] You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot, 2013, 64: 569–583
[11] Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987–12992
[12] Kikuchi K, Ueguchi-Tanaka M, Yoshida K T, Nagato Y, Matsusoka M, Hirano H Y. Molecular analysis of the NAC gene family in rice. Mol Gen Genet, 2000, 262: 1047–1051
[13] Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One, 2014, 9(1): e86895
[14] Taga Y, Takai R, Kaneda T, Matsui H, Isogai A, Che F S. Role of OsHSP90 and IREN, Ca2+ dependent nuclease, in plant hypersensitive cell death induced by transcription factor OsNAC4. Plant Signal Behav, 2009, 4:740–742
[15] Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che F S. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J, 2009, 28: 926–936
[16] Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617–630
[17] 孟庆长. 大豆GmNAC和GmLFY转录因子编码基因的克隆、鉴定和种子性状的QTL定位研究. 南京农业大学博士论文, 江苏南京, 2006
Meng Q C. Cloning and Identification of Genes Encoding Two Types of Transcription Factor, GmNAC and GmLFY and QTL Mapping for Seed Traits in Soybean (Glycine max (L.) Merr.). PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2006 (in Chinese with English abstract)
[18] Meng Q, Zhang C, Gai J, Yu D. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol, 2007, 164: 1002–1012
[19] 韩巧玲. 大豆重要抗逆相关基因GmE2、GmNAC2a的特性分析及功能鉴定. 西北农林科技大学硕士学位论文, 陕西杨凌, 2010
Han Q L. Characteristics and Functional Identification of Two Important Stress-Related Genes GmE2 and GmNAC2a from Soybean. MS Thesis of Northwest A & F University, Yangling, China, 2010 (in Chinese with English abstract)
[20] 金杭霞. 大豆转录因子GmNAC2和GmNAC5功能验证. 南京农业大学博士学位论文, 江苏南京, 2011
Jin H X. Functional Analysis of Two Transfactors GmNAC2 and GmNAC5 in Soybean. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2011 (in Chinese with English abstract)
[21] 才华, 朱延明, 李勇, 柏锡, 纪巍, 王冬冬, 孙晓丽. 野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析. 作物学报, 2011, 37: 1351–1359
Cai H, Zhu Y M, Li Y, Bai X, Ji W, Wang D D, Sun X L. Isolation and tolerance analysis of GsNAC20 gene linked to response to stress in Glycine soja. Acta Agron Sin, 2011, 37: 1351–1359 (in Chinese with English abstract)
[22] Tran L S, Quach T N, Guttikonda S K, Aldrich D L, Kumar R, Neelakandan A, Valliyodan B, Nguyen H T. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genom, 2009, 281: 647–664
[23] Le D T, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res, 2011, 18: 263–276
[24] Le D T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham le H, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One, 2012, 7(11): e49522
[25] 王洋, 柏锡. 大豆NAC基因家族生物信息学分析. 大豆科学, 2014, 33: 325–333
Wang Y, Bai X. Bioinformatics analysis of NAC gene family in Glycine max L. Soybean Sci, 2014, 33: 325–333 (in Chinese with English abstract)
[26] Hao Y J, Song Q X, Chen H W, Zou H F, Wei W, Kang X S, Ma B, Zhang W K, Zhang J S, Chen S Y. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta, 2010, 232: 1033–1043
[27] Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lei G, Tian A G, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J, 2011, 68: 302–313
[28] 李伟, 韩蕾, 钱永强, 巨关升, 孙振元. 非生物逆境胁迫相关NAC转录因子的生物信息学分析. 西北植物学报, 2012, 32: 454–464
Li W, Han L, Qian Y Q, Ju G S, Sun Z Y. Bioinformatics analysis of abiotic stress related NAC transcription factors. Acta Bot Boreal-Occident Sin, 2012, 32: 454–464 (in Chinese with English abstract)
[29] You J, Zhang L, Song B, Qi X, Chan Z. Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PloS One, 2015, 10(3): e0122027 |