欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (07): 990-999.doi: 10.3724/SP.J.1006.2016.00990

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆盐胁迫相关GmNAC基因的鉴定、表达及变异分析

张彦威1,2,张礼凤1,李伟1,王彩洁1,张军1,徐冉1, *   

  1. 1 山东省农业科学院作物研究所, 山东济南 250131; 2 东北农业大学大豆生物学教育部重点实验室, 黑龙江哈尔滨 150001
  • 收稿日期:2015-12-16 修回日期:2016-03-14 出版日期:2016-07-12 网络出版日期:2016-03-28
  • 通讯作者: 徐冉, E-mail: soybeanxu@126.com
  • 基金资助:

    本研究由?东北农业大学大豆生物学教育部重点实验室开放基金项目(SB14A04), 国家现代农业产业技术体系建设专项(CARS-04-CES18), 国家自然科学基金项目(31501329)和山东省自然科学基金项目(ZR2015YL070)资助。

Identification, Expression and Variation Analysis of Salt Tolerance Related GmNAC Genes in Soybean

ZHANG Yan-Wei1, 2,ZHANG Li-Feng1,LI Wei1,WANG Cai-Jie1,ZHANG Jun1,XU Ran1, *   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250131, China; 2 Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150001, China
  • Received:2015-12-16 Revised:2016-03-14 Published:2016-07-12 Published online:2016-03-28
  • Contact: 徐冉, E-mail: soybeanxu@126.com
  • Supported by:

    The work was supported by Open Foundation of Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University (SB14A04), China Agriculture Research System (CARS-04-CES18), National Natural Science Foundation of China (31501329), and Shandong Provincial Natural Science Foundation (ZR2015YL070).

摘要:

NAC基因在植物的逆境胁迫中发挥着重要作用。本研究参照水稻和拟南芥的逆境相关NAC基因, 采用生物信息学方法鉴定了大豆逆境相关GmNAC基因, 利用荧光定量PCR技术分析了GmNAC基因在耐盐差异的大豆品种根部、叶片的表达及其对NaCl胁迫的应答, 采用反转录PCR技术克隆了表达差异显著的GmNAC基因。结果表明, 大豆GmNAC基因家族包含175个基因, 其中11个GmNAC蛋白与水稻和拟南芥的逆境相关NAC蛋白位于同一进化分支, 这些蛋白具有高度保守的NAC结构域; 这11个GmNAC基因在大豆根部的表达均高于在叶片, 而且在叶片和根部均受NaCl诱导, 部分基因在根部和叶片以及品种间表现出不同的表达规律; 在大豆品种齐黄34、徐豆10和汾豆95中, Glyma06g11970.1存在3个同义突变和1个非同义突变, Glyma06g16440.2存在1个同义突变。

关键词: 大豆, GmNAC, 进化树, NaCl处理, 表达分析, 序列变异

Abstract:

NAC genes play an important role in plant stress tolerance. In this study, bioinformatics method was used to identify the stress related GmNAC gene in soybean; the expression of candidated GmNAC genes in root and leaf was analyzed in soybean with NaCl treatment by Real-time-PCR. Reverse transcription PCR was performed to clone genes with significant difference in expression. The results showed that there were 175 genes in soybean GmNAC gene family. There were 11 GmNACproteins with highly conserved NAC located on the same evolutionary branch with the stress related NAC proteins in rice and Arabidopsis. The expression of 11 GmNAC genes in soybean root was higher than that in leaf. The GmNAC genes were all induced by NaCl stress, but part of the GmNAC genes showed different expression levels between root and leaf in soybean varieties with different salt tolerances. There were three synonymous mutations and one non-synonymous mutation on the CDS region of Glyma06g11970.1 and one synonymous mutation on the CDS region of Glyma06g16440.2 in Qihuang 34, Xudou 10, and Fendou 95.

Key words: Soybean, GmNAC, Phylogenetic tree, NaCl treatment, Expression analysis, Sequence variation

[1] Atkinson N J, Urwin P E. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot, 2012, 63: 3523–3543
[2] 李鹏, 黄耿青, 李学宝. 植物NAC转录因子. 植物生理学通讯, 2010, 46: 294–300
Li P, Huang G Q, Li X B. Plant NAC transcription factors. Plant Physiol Mol Biol, 2010, 46: 294–300 (in Chinese with English abstract)
[3] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841–857
[4] 柳展基, 邵凤霞, 唐桂英. 植物NAC转录因子的结构功能及其表达调控研究进展. 西北植物学报, 2007, 27: 1915–1920
Liu Z J, Shao F X, Tang G Y. The research progress of structure, function and regulation of plant NAC transcription factors. Acta Bot Boreal-Occident Sin, 2007, 27(9): 1915–1920 (in Chinese with English abstract)
[5] Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore J D, Zhang P, Jackson A, Cooke E, Bewicke-Copley F, Mead A, Beynon J, Wild D L, Denby K J, Ott S, Buchanan-Wollaston V. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J, 2013, 75: 26–39
[6] Guan Q, Yue X, Zeng H, Zhu J. The protein phosphatase RCF2 and its interacting partner NAC019 are critical for heat stress-responsive gene regulation and thermo tolerance in Arabidopsis. Plant Cell, 2014, 26: 438–453
[7] Bu Q, Jiang H, Li C B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res, 2008, 18: 756–767
[8] Jiang H, Li H, Bu Q, Li C. The RHA2a-interacting proteins ANAC019 and ANAC055 may play a dual role in regulating ABA response and jasmonate response. Plant Signal Behav, 2009, 4: 464–466
[9] Christianson J A, Wilson I W, Llewellyn D J, Dennis E S. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment. Plant Physiol, 2009, 149: 1724–1738
[10] You J, Zong W, Li X, Ning J, Hu H, Li X, Xiao J, Xiong L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J Exp Bot, 2013, 64: 569–583
[11] Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987–12992
[12] Kikuchi K, Ueguchi-Tanaka M, Yoshida K T, Nagato Y, Matsusoka M, Hirano H Y. Molecular analysis of the NAC gene family in rice. Mol Gen Genet, 2000, 262: 1047–1051
[13] Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One, 2014, 9(1): e86895
[14] Taga Y, Takai R, Kaneda T, Matsui H, Isogai A, Che F S. Role of OsHSP90 and IREN, Ca2+ dependent nuclease, in plant hypersensitive cell death induced by transcription factor OsNAC4. Plant Signal Behav, 2009, 4:740–742
[15] Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che F S. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J, 2009, 28: 926–936
[16] Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617–630
[17] 孟庆长. 大豆GmNAC和GmLFY转录因子编码基因的克隆、鉴定和种子性状的QTL定位研究. 南京农业大学博士论文, 江苏南京, 2006
   Meng Q C. Cloning and Identification of Genes Encoding Two Types of Transcription Factor, GmNAC and GmLFY and QTL Mapping for Seed Traits in Soybean (Glycine max (L.) Merr.). PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2006 (in Chinese with English abstract)
[18] Meng Q, Zhang C, Gai J, Yu D. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J Plant Physiol, 2007, 164: 1002–1012
[19] 韩巧玲. 大豆重要抗逆相关基因GmE2、GmNAC2a的特性分析及功能鉴定. 西北农林科技大学硕士学位论文, 陕西杨凌, 2010
   Han Q L. Characteristics and Functional Identification of Two Important Stress-Related Genes GmE2 and GmNAC2a from Soybean. MS Thesis of Northwest A & F University, Yangling, China, 2010 (in Chinese with English abstract)
[20] 金杭霞. 大豆转录因子GmNAC2和GmNAC5功能验证. 南京农业大学博士学位论文, 江苏南京, 2011
   Jin H X. Functional Analysis of Two Transfactors GmNAC2 and GmNAC5 in Soybean. PhD Dissertation of Nanjing Agricultural University, Nanjing, China, 2011 (in Chinese with English abstract)
[21] 才华, 朱延明, 李勇, 柏锡, 纪巍, 王冬冬, 孙晓丽. 野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析. 作物学报, 2011, 37: 1351–1359
   Cai H, Zhu Y M, Li Y, Bai X, Ji W, Wang D D, Sun X L. Isolation and tolerance analysis of GsNAC20 gene linked to response to stress in Glycine soja. Acta Agron Sin, 2011, 37: 1351–1359 (in Chinese with English abstract)
[22] Tran L S, Quach T N, Guttikonda S K, Aldrich D L, Kumar R, Neelakandan A, Valliyodan B, Nguyen H T. Molecular characterization of stress-inducible GmNAC genes in soybean. Mol Genet Genom, 2009, 281: 647–664
[23] Le D T, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res, 2011, 18: 263–276
[24] Le D T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham le H, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One, 2012, 7(11): e49522
[25] 王洋, 柏锡. 大豆NAC基因家族生物信息学分析. 大豆科学, 2014, 33: 325–333
   Wang Y, Bai X. Bioinformatics analysis of NAC gene family in Glycine max L. Soybean Sci, 2014, 33: 325–333 (in Chinese with English abstract)
[26] Hao Y J, Song Q X, Chen H W, Zou H F, Wei W, Kang X S, Ma B, Zhang W K, Zhang J S, Chen S Y. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation. Planta, 2010, 232: 1033–1043
[27] Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lei G, Tian A G, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J, 2011, 68: 302–313
[28] 李伟, 韩蕾, 钱永强, 巨关升, 孙振元. 非生物逆境胁迫相关NAC转录因子的生物信息学分析. 西北植物学报, 2012, 32: 454–464
   Li W, Han L, Qian Y Q, Ju G S, Sun Z Y. Bioinformatics analysis of abiotic stress related NAC transcription factors. Acta Bot Boreal-Occident Sin, 2012, 32: 454–464 (in Chinese with English abstract)
[29] You J, Zhang L, Song B, Qi X, Chan Z. Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon. PloS One, 2015, 10(3): e0122027

[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[12] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[13] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[14] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[15] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!