[1]Kim H J, Lim P O, Hong G N. Molecular regulation of leaf senescence. Curr Opin Plant Biol, 2003, 6: 79–84
[2]Leister D. Chloroplast research in the genomic age. Trends Genet, 2003, 19: 47–56
[3]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, S N, Wang L F, Jiang L. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[4]Guo Y, Cai Z, Gan S. Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ, 2004, 27: 521–549
[5]Liu L, Zhou Y, Zhou G, Ye R J, Zhao L N, Li X H, Lin Y J. Identification of early senescence-associated genes in rice flag. Plant Mol Biol, 2008, 67: 37–55
[6]Li Z H, Zhao Y, Liu X C, Peng J Y, Guo H W, Luo J C. LSD 2.0: an update of the leaf senescence database. Nucl Acids Res, 2014, 42(D1): 200–205
[7]Xu X B, Bai H Q, Liu C P, Chen E Y, Chen Q F, Zhuang J Y, Shen B. Genome-wide analysis of microRNAs and their target genes related to leaf senescence of rice. PLoS One, 2014, 9(12): e114313
[8]Schippers J H M, Schmidt R, Wagstaff C, Jing H C. Living to die and dying to live: The survival strategy behind leaf senescence. Plant Physiol, 2015, 169: 914–930
[9]Abdelkhalik A F, Nomura R S K, Ikehashi H. QTL-based analysis of leaf senescence in an indica/japonica hybrid in rice (Oryza sativa L.). Theor Appl Genet, 2005, 110: 1226–1235
[10]Yoo S C, Cho S H, Zhang H, Paik H C, Lee C H, Li J, Yoo J H, Lee B W, Koh H J, Seo H S, Paek N C. Quantitative trait loci associated with functional stay-green SNU-SG1 in rice. Mol Cells, 2007, 24: 83–94
[11]Wu H B, Wang B, Chen L Y , Liu L G, Chen L T. Characterization and fine mapping of the rice premature senescence mutant ospse1. Theor Appl Genet, 2013, 126: 1897–1907
[12]Li Z, Zhang Y X, Liu L, Liu Q, Bi Z Z, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300–307
[13]Yan W Y, Ye S H, Jin Q S, Zeng L J, Peng Y, Yan D W, Yang W B, Yang D L, He Z H, Dong Y J, Zhang X M. Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. J Genet Genomics, 2010, 37: 47–55
[14]Wang J, Wu S J, Zhou Y, Zhou L H, Xu J F, Hu J, Fang Y X, Gu M H, Liang G H. Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). Chin Sci Bull, 2006, 51: 2986–2992
[15]张涛, 孙玉莹, 郑建敏, 程治军, 蒋开锋, 杨莉, 曹应江, 游书梅, 万建民, 张建奎. 水稻早衰叶突变体PLS2的遗传分析与基因定位. 作物学报, 2014, 40: 2070–2080
Zhang T, Sun Y Y, Zheng L M, Cheng Z J, Jiang K F, Yang L, Cao Y J, You S M, Wan J M, Zhang J K. Genetic analysis and fine mapping of a premature leaf senescence mutant in rice (Orzya sativa L.). Acta Agron Sin. 2014, 40: 2070–2080 (in Chinese with an English abstract)
[16]Li F Z, Hu G C, Fu Y P, Si H M, Bai X M, Sun Z X. Genetic analysis and high-resolution mapping of a premature senescence gene Pse(t) in rice (Oryza sativa L.). Genome, 2005, 48: 738–746
[17]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and gene mapping of a dominant presenescing leaf gene PSL3 in rice (Oryza sativa L.). Chin Sci Bull, 2010, 55: 2517–2521
[18]Yang Y L, Rao Y C, Liu H J, Fang Y X, Dong G J, Huang L C, Leng Y J, Guo L B, Zhang G H, Hu J. Characterization and fine mapping of an early senescence mutant (es-t) in Oryza sativa L. Chin Sci Bull, 2011, 56: 2437–2443
[19]徐芳芳, 桑贤春, 任德勇, 唐彦强, 胡宏伟, 杨正林, 赵芳明, 何光华. 水稻早衰突变体esl2的遗传分析和基因定位. 作物学报, 2012, 38: 1347–1353
Xu F F, Sang X C, Ren D Y, Tang Y Q, Hu H W, Yang Z L, Zhao F M, He G H. Genetic analysis and gene mapping of early senescence leaf mutant esl2 in rice. Acta Agron Sin, 2012, 38: 1347–1353 (in Chinese with an English abstract)
[20]吕典华, 宗学凤, 王三根, 凌英华, 桑贤春, 何光华. 两个水稻叶色突变体的光合特性研究. 作物学报, 2009, 35: 2304–2308.
Lv D H, Zong X F, Wang S G, Ling Y H, Sang X C, He G H. Characteristics of photosynthesis in two leaf color mutants of rice. Acta Agron Sin, 2009, 35: 2304–2308 (in Chinese with an English abstract)
[21]Wellburn A R. The spectra determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307–313
[22]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832
[23]王晓雯, 蒋钰东, 廖红香, 杨波, 邹帅宇, 朱小燕, 何光华, 桑贤春. 水稻白穗突变体wp4的鉴定与基因精细定位. 作物学报, 2015, 41: 838–844.
Wang X W, Jiang Y D, Liao H X, Yang B, Zou S Y, Zhu X Y, He G H, Sang X C. Identification and gene fine mapping of white panicle mutant wp4 in Oryza sativa. Acta Agron Sin, 2015, 6: 838–844 (in Chinese with an English abstract)
[24]Panaud O, Chen X, Mccouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol General Genet, 1996, 252: 597–607
[25]Sulpice R, Pyl E T, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques M C, Korff M V, Steinhauser M C, Keurentjes J J B, Guenther M, Hoehne M, Selbig J, Fernie A R, Altmann T, Stitt M. Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA, 2009, 106: 10348–10353
[26]Samojedny D, Orzechowski S. New look at starch degradation in Arabidopsis thaliana L. chloroplasts. Postepy Biochem, 2007, 53:74–83
[27]Yandeau-Nelson M D, Laurens L, Shi Z, Xia H, Smith A M, Guiltinan M J. Starch-branching enzyme IIa is required for proper diurnal cycling of starch in leaves of maize. Plant Physiol, 2011, 156: 479–490
[28]Lin A H, Wang Y Q, Tang J Y, Xue P, Li C L, Liu L C, Hu B, Yang F Q, Loake G J, Chu C C. Nitric oxide and protein S-Nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol, 2012, 158: 451–464
[29]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[30]Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388
[31]Liang C Z, Wang Y Q, Zhu Y N, Tang J Y, Hu B, Liu L C, Ou S J, Wu H K, Sun X H, Chu J F. OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA, 2014, 111: 10013–10018
[32]Sakuraba Y, Piao W, Lim J H, Han S H, Kim Y S, An G, Paek N C: Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol, 2015, 56: 2325–2339
[33]Schippers J H M. Transcriptional networks in leaf senescence. Curr Opin Plant Biol, 2015, 27: 77–83
[34]Sun S J, Guo S Q, Yang X, Bao Y M, Tang H J, Sun H, Huang J, Zhang H S. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot, 2010, 61(10): 2807–2818
[35]Hu X M, Qian Q, Xu T, Zhang Y, Dong G J, Gao T, Xie Q, Xue Y B. The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice. PLoS Genet, 2013, 9(3): e1003391
[36]Fang H M, Meng Q L, Xu J W, Tang H J, Tang S Y, Zhang H S, Huang J. Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Mol Biol, 2015, 87: 441–458
[37]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133
[38]Lepistö A, Kangasjärvi S, Luomala E M, Brader G, Sipari N, Keränen M, Keinänen M, Rintamäki E. Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol, 2009, 149: 1261–1276 |