欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (10): 1419-1428.doi: 10.3724/SP.J.1006.2016.01419

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

大豆14-3-3蛋白与转录因子蛋白GmMYB173的互作

董萌1,2,高友菲2,韩天富2,东方阳1,*,蒋炳军2,*   

  1. 1河北科技师范学院生命科技学院,河北秦皇岛066000;2中国农业科学院作物科学研究所/农业部北京大豆生物学重点实验室,北京100081
  • 收稿日期:2016-03-15 修回日期:2016-06-20 出版日期:2016-10-12 网络出版日期:2016-07-04
  • 通讯作者: 东方阳,E-mail:yang_dongfang@hotmail.com,Tel:13780335864;蒋炳军,E-mail:jiangbingjun@caas.cn,Tel:13910305439
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-04)和中国农业科学院科技创新工程资助。

Interaction of Soybean 14-3-3 Proteins with Transcription Factor GmMYB173

DONG Meng1,2, GAO You-Fie2, HAN Tian-Fu2, DONG-FANG Yang1,*, and JIANG Bing-Jun2,*   

  1. 1 Life Science and Technology College, Hebei Normal University of Science & Technology, Qinhuangdao 066000, China; 2 Key Laboratory of Soybean Biology (Beijing), Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-03-15 Revised:2016-06-20 Published:2016-10-12 Published online:2016-07-04
  • Contact: 东方阳,E-mail:yang_dongfang@hotmail.com,Tel:13780335864;蒋炳军,E-mail:jiangbingjun@caas.cn,Tel:13910305439
  • Supported by:

    ThisstudywassupportedbytheSpecialProgramofModernAgro-industryTechnologySystem(CARS-04)andtheAgriculturalScienceandTechnologyInnovationProgramofChineseAcademyofAgriculturalSciences.

摘要:

14-3-3蛋白家族在真核生物中普遍存在,可与其他蛋白相互作用,调控多种生理生化过程。MYB基因家族作为植物中最大的一类转录因子,广泛参与了植物的生长发育和代谢调控。本研究通过分析1个从自贡冬豆中克隆的MYB转录因子GmMYB173的亚细胞定位情况,发现GmMYB173在细胞核中特异表达;序列分析发现GmMYB173与GmMYB176相似,具有1个14-3-3蛋白的潜在结合结构域,即pST结合结构域。通过重叠延伸PCR (SOE-PCR)删除了GmMYB173序列中pST结合结构域编码序列,发现GmMYB173细胞核表达特异性消失。酵母双杂交互作分析表明,大豆基因组中所有具有表达的16个14-3-3蛋白GmSGF14a~GmSGF14p均能与GmMYB173互作。β-半乳糖苷酶活性分析发现,与GmMYB173互作最强的是GmSGF14n,GmSGF14k、GmSGF14e和GmSGF14o其次。这些结果说明14-3-3蛋白不仅与GmMYB173互作,且可能调控其在细胞内的定位,有助于研究14-3-3蛋白与GmMYB173的互作关系及其在大豆生长发育中的作用。

关键词: 14-3-3蛋白, GmMYB173, 亚细胞定位, 酵母双杂交

Abstract:

14-3-3 proteins, nearly existing in all eukaryotic cells, may regulate many physiological and biochemical processes through interacting with other proteins. As the largest class of transcription factors in plants, MYB gene family is widely involved in plant growth and metabolism regulation. A gene cloned from soybean cultivar Zigongdongdou, and specifically expressed in the nuclear in the subcellular location assay. Sequence analysis showed that there was a binding site of 14-4-4 proteins, namely the pST binding site, in GmMYB173 similar to that in GmMYB176. The nuclear-specific expression of GmMYB173 disappeared when the sequence of the pST binding site was deleted through the splicing by overlap extension PCR. All 14-3-3 proteins from GmSGF14a to GmSGF14p could interact with GmMYB173. Among them, GmSGF14n interacted with GmMYB173 strongest, GmSGF14e and GmSGF14k took second place, which was proved by the β-galactosidase activity analysis. These results suggest that 14-3-3 proteins not only interact with GmMYB173, but also probably regulate its subcellular location. The information provided by this study will facilitate the study of interaction relationship between 14-3-3 proteins and GmMYB173 and its function on the soybean development.

Key words: 14-3-3proteins, GmMYB173, Subcellularlocation, Yeasttwo-hybrid

[1]BrandtJ,Thordal-ChristensenH,VadK,GregersenPL,CollungeDB.Apathogen-inducedgeneofbarleyencodesaproteinshowinghighsimilaritytoaproteinkinaseregulator.PlantJ,1992,2:815–820 [2]LuG,DeLisleAJ,deVettenNC,FerlRJ.Brainproteinsinplants:anArabidopsishomologtoneurotransmitterpathwayactivatorsispartofaDNAbindingcomplex.ProcNatlAcadSciUSA,1992,89:11490–11494 [3]HirschS,AitkenA,BertschU,SollJ.Aplanthomologuetomammalianbrain14-3-3proteinandproteinkinaseCinhibitor.FEBSLett,1992,296:222–224 [4]DeLilleJM,SehnkePC,FerlRJ.TheArabidopsis14-3-3familyofsignalingregulators.PlantPhysiol,2001,126:35–38 [5]RosenquistM,AlsterfjordM,LarssonC,SommarinM.DataminingtheArabidopsisgenomerevealsfifteen14-3-3genes.Expressionisdemonstratedfortwooutoffivenovelgenes.PlantPhysiol,2001,127:142–149 [6]YaoY,DuY,JiangL,LiuJY.Molecularanalysisandexpressionpatternsofthe14-3-3genefamilyfromOryzasativa.JBiochemMolBiol,2007,40:349–357 [7]LiX,DhaubhadelS.Soybean14-3-3genefamily:identificationandmolecularcharacterization.Planta,2011,233:569–582 [8]YaffeMB,RittingerK,VoliniaS,CaronPR,AitkenA,LeffersH,GamblinSJ,SmerdonSJ,CantleyLC.Thestructuralbasisfor14-3-3:phosphopeptidebindingspecificity.Cell,1997,91:961–971 [9]FuH,SubramanianRR,MastersSC.14-3-3proteins:structure,function,andregulation.AnnuRevPharmacolToxicol,2000,40:617–647 [10]SumiokaA,NagaishiS,YoshidaT,LinA,MiuraM,SuzukiT.Roleof14-3-3γinFE65-dependentgenetransactivationmediatedbytheamyloidβ-proteinprecursor.JBiolChem,2005,280:42364–42374 [11]CasarettoJ,HoTH.ThetranscriptionfactorsHvABI5andHvVP1arerequiredfortheabscisicacidinductionofgeneexpressioninbarleyaleuronecells.PlantCell,2003,15:271–284 [12]FoltaKM,PaulAL,MayfieldJD,FerlRJ.14-3-3isoformsparticipateinredlightsignalingandphotoperiodicflowering.PlantSignalBehav,2008,3:304–306 [13]HuberSC,MacKintoshC,KaiserWM.Metabolicenzymesastargetsfor14-3-3proteins.PlantMolBio,2002,50:1053–1063 [14]PaulAL,FoltaKM,FerlRJ.14-3-3proteins,redlightandphotoperiodicflowering:apointofconnection.PlantSignalBehav,2008,3:511–515 [15]HajduchM,GanapathyA,SteinJW,ThelenJJ.Asystematicproteomicstudyofseedfillinginsoybean.Establishmentofhigh-resolutiontwo-dimensionalreferencemaps,expressionprofiles,andaninteractiveproteomedatabase.PlantPhysiol,2005,137:1397–1419 [16]ProuseMB,CampbellMM.TheinteractionbetweenMYBproteinsandtheirtargetDNAbindingsites.BiochimBiophysActa,2012,1819:67–77 [17]陈清,汤浩茹,董晓莉,侯艳霞,罗娅,蒋艳,黄琼瑶.植物Myb转录因子的研究进展.基因组学与应用生物学,2009,28:365–372 ChenQ,TangHR,DongXL,HouYX,LuoY,JiangY,HuangQY.ProgressintheStudyofPlantMybTranscriptionFactors.GenoApplBiol,2009,28:365–372(inChinesewithEnglishabstract) [18]LiaoY,ZouHF,WangHW,ZhangWK,MaB,ZhangJS,ChenSY.SoybeanGmMYB76,GmMYB92,andGmMYB177genesconferstresstoleranceintransgenicArabidopsisplants.CellRes,2008,18:1047–1060 [19]李晓薇.大豆两个MYB转录因子基因的克隆及其功能分析.吉林大学博士学位论文,吉林长春,2011 LiXW.CloningandCharacterizationofTwoMYBTranscriptionFactorGenesfromSoybean.PhDDissertationofJilinUniversity,Changchun,China,2011(inChinesewithEnglishabstract) [20]LiuYF,LiQT,LuX,SongQX,LamSM,ZhangWK,MaB,LinQ,ManWQ,DuWG,ShuiGH,ChenSY,ZhangJS.SoybeanGmMYB73promoteslipidaccumulationintransgenicplants.BMCPlantBiol,2014,14:1 [21]ChenL,BernhardtA,LeeJ,HellmannH.IdentificationofArabidopsisMYB56asaNovelSubstrateforCRL3(BPM)E3Ligases.MolPlant,2015,8:242–250 [22]LiuL,ZhangJ,AdrianJ,GissotL,CouplandG,YuD,TurckF.ElevatedLevelsofMYB30inthephloemacceleratefloweringinArabidopsisthroughtheregulationofFLOWERINGLOCUST.PloSOne,2014,9:e89799 [23]YiJ,DerynckMR,LiX,TelmerP,MarsolaisF,DhaubhadelS.Asingle-repeatMYBtranscriptionfactor,GmMYB176,regulatesCHS8geneexpressionandaffectsisoflavonoidbiosynthesisinsoybean.PlantJ,2010,62:1019–1034 [24]LiX,ChenL,DhaubhadelS.14-3-3proteinsregulatetheintracellularlocalizationofthetranscriptionalactivatorGmMYB176andaffectisoflavonoidsynthesisinsoybean.PlantJ,2012,71:239–250 [25]高友菲,岳岩磊,蒋炳军,韩天富.大豆GmFT2a启动子InDel区结合蛋白的筛选.中国油料作物学报,2015,37:27–34 GaoYF,YueYL,JiangBJ,HanTF.ScreeningofproteinbindingtoGmFT2apromoterindelregioninsoybean.ChinJOilCropSci,2015,37:27–34(inChinesewithEnglishabstract) [26]曲梦楠.大豆GmFT2b基因的功能分析.中国农业科学院硕士学位论文,北京,2014 QuMN.FunctionAnalysisofGmFT2bGeneinGlyminemax.MSThesisofChineseAcademyofAgriculturalSciences,Beijing,China,2014(inChinesewithEnglishabstract) [27]邢浩然,刘丽娟,刘国振.植物蛋白质的亚细胞定位研究进展.华北农学报,2006,21(增刊2):1–6 XingHR,LiuLJ,LiuGZ.AdvancementofProteinSubcellularLocalizationinPlant.ActaAgricBoreali-Sin,2006,21(S2):1–6(inChinesewithEnglishabstract) [28]刘海燕,冯冬茹,刘兵,何炎明,王宏斌,王金发.农杆菌介导的MpASR蛋白在洋葱表皮细胞的定位研究.热带亚热带植物学报,2009,17:218–222 LiuHY,FengDR,LiuB,HeYM,WangHB,WangJF.StudiesonsubcellularlocalizationofMpASRinonionepidermalcellsmediatedbyAgrobacterium.JTrop&SubtropBot,2009,17:218–222(inChinesewithEnglishabstract) [29]JinH,XuG,MengQ,HuangF,YuD.GmNAC5,aNACtranscriptionfactor,isatransientresponseregulatorinducedbyabioticstressinsoybean.SciWorldJ,2013,2013:768–972 [30]NanH,CaoD,ZhangD,LiY,LuS,TangL,YuanX,LiuB,KongF.GmFT2aandGmFT5aredundantlyanddifferentiallyregulatefloweringthroughinteractionwithandupregulationofthebZIPtranscriptionfactorGmFDL19insoybean.PloSOne,2014,9:e97669

[1] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[2] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[3] 张志兴, 陈花, 敏秀梅, 许海龙, 宋果, 林文雄. 多肽配体R18促进水稻弱势籽粒灌浆的初步研究[J]. 作物学报, 2021, 47(7): 1332-1341.
[4] 陈玉婷, 刘露, 楚盼盼, 魏嘉贤, 钱慧娜, 陈华, 蔡铁城, 庄伟建, 张冲. 受青枯菌诱导的花生根酵母双杂交文库构建和AhRRS5互作蛋白的筛选[J]. 作物学报, 2021, 47(11): 2134-2146.
[5] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[6] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[7] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[8] 衡友强,游西龙,王艳. 费尔干猪毛菜病程相关蛋白SfPR1a基因的异源表达增强了烟草对干旱、盐及叶斑病的抗性[J]. 作物学报, 2020, 46(4): 503-512.
[9] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[10] 李娜娜, 刘莹, 张豪杰, 王璐, 郝心愿, 张伟富, 王玉春, 熊飞, 杨亚军, 王新超. 茶树己糖激酶基因CsHXK2的启动子克隆及表达特性分析[J]. 作物学报, 2020, 46(10): 1628-1638.
[11] 柯丹霞,彭昆鹏. 利用酵母双杂交系统筛选大豆结瘤因子受体NFR1α的互作蛋白[J]. 作物学报, 2020, 46(01): 31-39.
[12] 白晓璟,廉小平,王玉奎,张贺翠,刘倩莹,左同鸿,张以忠,谢琴琴,胡燈科,任雪松,曾静,罗绍兰,蒲敏,朱利泉. 甘蓝SI相关基因BoCDPK14的克隆与分析[J]. 作物学报, 2019, 45(12): 1773-1783.
[13] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
[14] 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828.
[15] 晁毛妮, 温青玉, 张志勇, 胡根海, 张金宝, 王果, 王清连. 陆地棉钾转运体基因GhHAK5的序列特征及表达分析[J]. 作物学报, 2018, 44(02): 236-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!