欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1332-1341.doi: 10.3724/SP.J.1006.2021.02049

• 耕作栽培·生理生化 • 上一篇    下一篇

多肽配体R18促进水稻弱势籽粒灌浆的初步研究

张志兴1,2, 陈花1, 敏秀梅1, 许海龙1, 宋果1, 林文雄1,2,*()   

  1. 1福建农林大学生命科学学院, 福建福州, 350002
    2福建农林大学 / 福建省农业生态过程与安全监控重点实验室, 福建福州, 350002
  • 收稿日期:2020-07-18 接受日期:2020-12-01 出版日期:2021-07-12 网络出版日期:2021-01-09
  • 通讯作者: 林文雄
  • 作者简介:E-mail: zhangzhixingfz@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31871542);国家重点研发计划项目资助(2018YFD0301105)

Preliminary study of the peptide aptamer R18 promotes grain filling of rice inferior spikelets

ZHANG Zhi-Xing1,2, CHEN Hua1, MIN Xiu-Mei1, XU Hai-Long1, SONG Guo1, LIN Wen-Xiong1,2,*()   

  1. 1College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujiang, China
    2Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujiang, China
  • Received:2020-07-18 Accepted:2020-12-01 Published:2021-07-12 Published online:2021-01-09
  • Contact: LIN Wen-Xiong
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(31871542);the National Key Research and Development Program of China(2018YFD0301105)

摘要:

14-3-3蛋白在植物生长发育中具有重要的调控作用, 其亚型GF14f在水稻弱势籽粒中高表达是其灌浆结实差的一个重要的原因。本研究首先通过分子对接的方式, 发现多肽R18与GF14f蛋白具有潜在的结合位点, 进而采用体外竞争性实验, 发现R18能够竞争性的与GF14f蛋白结合, 从而导致GF14f与SuS2、SS和AGPS三个互作靶蛋白间的结合力减弱, 与此同时, 体外酶活实验表明, 外源添加R18能够显著提高淀粉合成酶(StSase)、蔗糖合成酶(SuSase)和ADPG焦磷酸化酶(AGPase) 3个酶的活性。免疫共沉淀实验表明, R18在水稻籽粒中除了能和GF14f结合外, 还能与GF14b、GF14c、GF14d及GF14e结合, BiFC结果也证实了上述结果。籽粒灌浆期, 外源喷施60 mg L -1浓度的R18于弱势籽粒上, StSase、SuSase及AGPase酶活性显著提高, 弱势籽粒千粒重及结实率也显著提高。本研究结果表明, 多肽配体R18能够与14-3-3互作靶蛋白竞争性结合, 减弱14-3-3与靶蛋白间的结合力, 进而释放籽粒灌浆过程中蔗糖转化及淀粉合成途径中关键酶的活性, 从而有利于弱势籽粒灌浆充实。

关键词: 水稻, 弱势籽粒, 灌浆, 14-3-3蛋白, 多肽配体

Abstract:

14-3-3 protein plays an important role in plant growth and development. The high expression abundant of 14-3-3 isoform (GF14f) was an important reason for the poor grain-filling of rice inferior spikelets. In the present study, firstly we used molecular docking to study the most possible binding sites between GF14f protein and peptide aptamer R18. Furthermore, in vitro competitive experiment showed that the R18 could block GF14f binding to its interaction proteins, in turn, lead to a weakened interaction of GF14f with the SuS2, SS, and AGPS. Meanwhile, in vitro enzymatic assays showed that exogenous added R18 significantly increased the activity of sucrose synthase (SuSase), adenosine diphosphate-glucose pyrophosphorylase (AGPase), and starch synthase (StSase). Coimmunoprecipitation (Co-IP) experiments revealed that, in addition to GF14f, R18 could interacted with the other 14-3-3 isoforms, such as GF14b, GF14c, GF14d, and GF14e, which were further confirmed by Bimolecular Fluorescent Complimentary (BiFC) assay. These results also showed that the exogenous application (60 mg L -1) of R18 at grain-filling stage could significantly increase the activity of StSase, SuSase, and AGPase, resulting in the improvement of 1000-grain weight and seed-setting rate of rice inferior spikelets. In the present study, R18 had been investigated to competitively interfere with the interaction of rice 14-3-3 protein with multiple client proteins, weak the binding force, which increased the activity of sucrose conversion and starch synthesis related enzyme, resulting in the improvement of grain filling of rice inferior spikelets.

Key words: rice, inferior spikelets, grain filling, 14-3-3 protein, peptide aptamer

表1

引物序列及用途"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
用途
Usage
pet32a_His_R18-F GCTGATATCGGATCCGAATTCCCCCACTGCGTGCCCAGG 载体构建
Vector construct
pet32a_His_R18-R GTGGTGGTGGTGGTGCTCGAGGGGGGGCAGGCACATGTT
YFPN-GF14b-F TATACTAGTATGTCGGCACAGGCGGAGC 双分子荧光互补实验载体
Vector for BiFC
YFPN-GF14b-R ATATACTAGTCTGCCCCTCGCTGGAGTCG
YFPN-GF14f-F TTTTGCCACTAGTATGTCGCCTGCTGAGGCATCGCGT 双分子荧光互补实验载体
Vector for BiFC
YFPN-GF14f-R TTTTCCACTAGTGTGGCCCTCTCCTTCAGGCTTCGCT
YFPN- R18-F CTAGAATGCCCCACTGCGTGCCCAGGGACCTGAGCTGGCTGGACCTGGAGGCCAACATGTGCCTGCCCCCCT 双分子荧光互补实验载体
Vector for BiFC
YFPN- R18-R CTAGAGGGGGGCAGGCACATGTTGGCCTCCAGGTCCAGCCAGCTCAGGTCCCTGGGCACGCAGTGGGGCATT

图1

GF14f蛋白与R18多肽分子对接示意图"

图2

多肽配体R18与GF14f互作靶蛋白竞争性结合 A: 随着His-R18浓度的增加GST-GF14f与His-SUS2之间的结合力逐渐减弱; B: 60 mg L-1 His-R18作用下GF14f与AGPS间的结合力显著下降; C: 60 mg L-1 His-R18作用下GF14f与SS间的结合力显著下降。"

图3

体外添加R18多肽对蔗糖降解及淀粉合成相关酶活的影响 A: 随着R18浓度的增加蔗糖合成酶的活性逐渐提高。B: 60 mg L-1 R18作用下ADPG焦磷酸化酶活性显著提高。C: 60 mg L-1 R18作用下淀粉合成酶活性显著提高。"

图4

外源涂抹R18体内 Western Blot验证 DAF: 开花后天数; CBB: 考马斯亮蓝。"

表2

R18与水稻籽粒14-3-3蛋白亚型互作列表"

蛋白ID
Protein IDs
蛋白名称
Protein name
独特肽数量
Unique peptides
LOC_Os04g38870.5 GF14b 2
LOC_Os08g33370.2 GF14c 4
LOC_Os11g34450.1 GF14d 3
LOC_Os02g36974.4 GF14e 2
LOC_Os03g50290.3 GF14f 5

图5

R18与14-3-3蛋白家族成员GF14b和GF14f能够在烟草叶表皮细胞中相互作用 A: R18与GF14b相互作用; B: R18与GF14f相互作用。"

图6

外源喷施R18溶液对籽粒灌浆过程中蔗糖降解及淀粉合成相关酶活性的影响 A: 60 mg L-1 R18溶液作用下ADPG焦磷酸化酶活性显著提高; B: 60 mg L-1 R18溶液作用下蔗糖合成酶活性显著提高; C: 60 mg L-1 R18溶液作用下淀粉合成酶活性显著提高。不同小写字母表示P < 0.05差异显著。"

图7

外源喷施R18溶液对弱势籽粒千粒重及结实率的影响 A: 弱势籽粒千粒重变化; B: 弱势籽粒结实率变化。不同小写字母表示P < 0.05差异显著。"

[1] 顾世梁, 朱庆森, 杨建昌, 彭少兵. 不同水稻材料籽粒灌浆特性的分析. 作物学报, 2001, 27:7-14.
Gu S L, Zhu Q S, Yang J C, Peng S B. Analysis on grain filling characteristics for different rice types. Acta Agron Sin, 2001,27:7-14 (in Chinese with English abstract).
[2] Yang J C, Zhang J H. Grain-filling problem in ‘super’ rice. J Exp Bot, 2010,61:1-4.
[3] Zhu G H, Ye N H, Yang J C, Peng X X, Zhang J H. Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J Exp Bot, 2011,11:3907-3916.
[4] Sekhar S, Gharat S A, Panda B B, Mohaptra T, Das K, Kariali E, Mohapatra P K, Shaw B P. Identification and characterization of differentially expressed genes in inferior and superior spikelets of rice cultivars with contrasting panicle-compactness and grain-filling properties. PLoS One, 2015,10:e0145749.
[5] Sun H, Peng T, Zhao Y, Du Y, Zhang J, Li J, Xin Z, Zhao Q. Dynamic analysis of gene expression in rice superior and inferior grains by RNA-Seq. PLoS One, 2015, 10:e0137168.
[6] You C, Zhu H, Xu B, Huang W, Wang S, Ding Y, Liu Z, Li G, Chen L, Ding C, Tang S. Effect of removing superior spikelets on grain filling of inferior spikelets in rice. Front Plant Sci, 2016,7:1161.
[7] Zhang Z X, Zhao H, Huang F L, Long J F, Song G, Lin W X. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice (Oryza sativa L.). Plant J, 2019,99:344-358.
doi: 10.1111/tpj.14329 pmid: 30912217
[8] Sluchanko N N. Association of multiple phosphorylated proteins with the 14-3-3 regulatory hubs: problems and perspectives. J Mol Biol, 2018, 430:20-26.
[9] Denison F C, Paul A L, Zupanska A K, Ferl R J. In 14-3-3 Proteins in Plant Physiology, Seminars in Cell and Developmental Biology, Elsevier, 2011. pp 720-727.
[10] de Boer A H, van Kleeff P J, Gao J. Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma, 2013, 250:425-440.
[11] Zhou H, Lin H, Chen S, Becker K, Yang Y, Zhao J, Kudla J, Schumaker K S, Guo Y. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell, 2014, 26:1166-1182.
[12] Colombo M, Mizzotti C, Masiero S, Kater M M, Pesaresi P. Peptide aptamers: the versatile role of specific protein function inhibitors in plant biotechnology. J Integr Plant Biol, 2015, 57:892-901.
[13] Hao Z, Gong P, He C, Lin J. Peptide aptamers to inhibit protein function in plants. Trends Plant Sci, 2018, 23:281-284.
[14] Wang B C, Yang H Z, Liu Y C, Jelinek T, Zhang L, Ruoslahti E, Fu H. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry, 1999,38:12499-12504.
doi: 10.1021/bi991353h pmid: 10493820
[15] Ishimaru T, Matsuda T, Ohsugi R, Yamagishi T. Morphological development of rice caryopses located at the different positions in a panicle from early to middle stage of grain filling. Funct Plant Biol, 2003,30:1139-1149.
pmid: 32689096
[16] Zhang Z X, Zhang Y P, Zhao H, Huang F L, Zhang Z F, Lin W X. The important functionality of 14-3-3 isoforms in rice roots revealed by affinity chromatography. J Proteom, 2017,158:20-30.
[17] Morrison D K . The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol, 2009,19:16-23.
doi: 10.1016/j.tcb.2008.10.003 pmid: 19027299
[18] Molzan M, Kasper S, Röglin L, Skwarczynska M, Sassa T, Inoue T, Breitenbuecher F, Ohkanda J, Kato N, Schuler M. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers. ACS Chem Biol, 2013,8:1869-1875.
[19] Cornell B, Toyo-Oka K. 14-3-3 proteins in brain development: neurogenesis, neuronal migration and neuromorphogenesis. Front Mol Neurosci, 2017,10:318.
[20] Masters S C, Fu H. 14-3-3 proteins mediate an essential anti-apoptotic signal. J Biol Chem, 2001,276:45193-45200.
pmid: 11577088
[21] 王志琴, 叶玉秀, 杨建昌, 袁莉民, 王学明, 朱庆森. 水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节. 作物学报, 2004,30:634-643.
Wang Z Q, Ye Y X, Yang J C, Yuang L M, Wang X M, Zhu Q S. Changes and regulations of sucrose synthase activity in rice grains during grain filling. Acta Agron Sin, 2004,30:634-643 (in Chinese with English abstract).
[22] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005,46:620-624.
[23] Zhang Z X, Zhao H, Tang J, Li Z, Li Z, Chen D M, Lin W X. A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) inferior spikelets. PLoS One, 2014,9:e89140.
[24] Zhang L, Chen J, Fu H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci USA, 1999,96:8511-8515.
doi: 10.1073/pnas.96.15.8511 pmid: 10411906
[25] Gong P, Quan H, He C. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. Plant J, 2014,80, 905-914.
doi: 10.1111/tpj.12672 pmid: 25230811
[26] 李俊周, 李磊, 孙传范, 赵全志, 杜彦修, 张静, 彭庭. 水氮互作对水稻籽粒充实及产量的影响. 中国农业大学学报, 2011,16:42-47.
Li J Z, Li L, Sun C F, Zhao Q Z, Du Y X, Zhang J, Peng T. Effects of water-nitrogen interaction on rice grain plumpness and yield. J China Agric Univ, 2011,16:42-47 (in Chinese with English abstract).
[27] 张志兴, 陈军, 李忠, 李兆伟, 黄锦文, 陈婷, 方长旬, 陈鸿飞, 林文雄. 水稻籽粒灌浆过程中蛋白质表达特性及其对氮肥运筹的响应. 生态学报, 2012,32, 3209-3224.
Zhang Z X, Chen J, Li Z, Li Z W, Huang J W, Chen T, Fang C X, Chen H F, Lin W X. Protein expression characteristics and their response to nitrogen application during grain-filling stage of rice (Oryza sativa L.). Acta Ecol Sin, 2012,32:3209-3224 (in Chinese with English abstract).
[28] Zhang H, Li H W, Yuan L M, Wang Z Q, Yang J C, Zhang J H. Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice. J Exp Bot, 2012,63:215-227.
doi: 10.1093/jxb/err263 pmid: 21926094
[29] Zhang Z X, Tang J, Du T W, Zhao H, Li Z, Li Z, Lin W X. Mechanism of developmental stagnancy of rice inferior spikelets at early grain-filling stage as revealed by proteomic analysis. Plant Mol Biol Rep, 2015,33:1844-1863.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[8] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!