欢迎访问作物学报,今天是

作物学报 ›› 2016, Vol. 42 ›› Issue (11): 1700-1707.doi: 10.3724/SP.J.1006.2016.01700

• 耕作栽培·生理生化 • 上一篇    下一篇

旗叶蜡质含量不同小麦近等基因系的抗旱性

徐文1,2,申浩1,2,郭军2,余晓丛2,李祥1,杨彦会1,马晓1,赵世杰1,*,宋健民2,*   

  1. 1作物生物学国家重点实验室 / 山东农业大学生命科学学院,山东泰安271018;2山东省农业科学院作物研究所,山东济南 250100
  • 收稿日期:2016-01-14 修回日期:2016-06-20 出版日期:2016-11-12 网络出版日期:2016-08-01
  • 通讯作者: 赵世杰, E-mail: sjzhao@sdau.edu.cn; 宋健民, E-mail: song_jianmin@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(31271635), 国家农业产业技术体系建设专项(CARS-03-1-8)和山东省自主创新重大关键技术计划项目(2014GJJS0201-1)资助。

Drought Resistance of Wheat NILs with Different Cuticular Wax Contents in Flag Leaf

XU Wen 1,2,SHEN Hao1,2,GUO Jun2,YU Xiao-Cong2,LI Xiang1,YANG Yan-Hui1,MA Xiao1,ZHAO Shi-Jie1,*,SONG Jian-Min2,*   

  1. 1State Key Laboratory of Crop Biology /College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; 2 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
  • Received:2016-01-14 Revised:2016-06-20 Published:2016-11-12 Published online:2016-08-01
  • Contact: Zhao Shijie, E-mail: sjzhao@sdau.edu.cn; Song Jianmin, E-mail: song_jianmin@163.com
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31271635), the China Agriculture Research System (CARS-03-1-8), and the Innovation Project for Key Technologies in Shandong Province (2014GJJS0201-1).

摘要:

于2013—2014和2014—2015年度,以多蜡质和少蜡质的4个小麦近等基因系为材料,采用田间旱棚方式控制土壤水分,研究了蜡质含量与小麦抗旱性的关系。结果表明,干旱处理后,多蜡质小麦品系旗叶的蜡质含量平均为15.15 mg g?1,较少蜡质小麦品系(8.43 mg g?1)高79.8%;多蜡质小麦品系旗叶的水势较高,干旱处理后下降幅度明显小于少蜡质小麦品系,水分散失率也显著低于少蜡质品系(P< 0.05);多蜡质小麦品系旗叶的光合速率平均下降7.5%,而少蜡质小麦品系下降9.8%;多蜡质小麦品系旗叶PSII最大光化学效率(Fv/Fm)平均下降幅度为3.4%,少蜡质小麦品系下降幅度达到5.8%;多蜡质小麦品系的籽粒产量高于少蜡质品系,平均高3.7%;多蜡质小麦品系的抗旱指数和干旱敏感指数均显著低于少蜡质小麦品系(P< 0.05)。以上结果表明,蜡质能够提高小麦的抗旱性,旗叶蜡质含量可以作为抗旱小麦品种的选择指标。

关键词: 小麦, 近等基因系, 蜡质含量, 抗旱性

Abstract:

The relationship of flag leaf cuticular wax content with leaf water potential, excised-leaf water loss, leaf photosynthesis characteristics and wheat yield under drought stress were analyzed in 2013–2014 and 2014–2015 wheat seasons using four wheat nearly isogenetic lines (NILs) differing in cuticular wax content in flag leaf. Under drought stress condition, the average flag leaf cuticular wax content of the high-wax NILs (15.15 mg g?1) was 79.8% higher than that of the low-wax NILs (8.43 mg g?1). Compared with the low-wax NILs, the high-wax NILs showed significantly higher water potential in flag leaf and lower water loss rate (P< 0.05). In response to drought stress, photosynthetic rate (Pn) and Fv/Fm of flag leaf declined in both types of NILs, however, the decrease percentages were lower in the high-wax NILs (7.5% and 3.4%, respectively) than in the low-wax NILs (9.8% and 5.8%, respectively). As a result, the average yield of the high-wax NILs was 3.7% higher than that of the low-wax NILs, and the drought tolerance (TOL) and stress susceptible index (SSI) of the high-wax NILs were significantly less than those of the low-wax NILs (P< 0.05). These results indicate that cuticular wax content in flag leaf is closely related to drought tolerance and can be used as a physiological indicator of drought resistance in wheat selection.

Key words: Common wheat (Triticum aestivum L.), Nearly isogenetic lines (NILs), Cuticular wax content, Drought resistance

[1]黄玲, 张正斌, 崔玉亭, 刘孟雨, 柴守玺, 陈兆波. 小麦叶片蜡质含量与水分利用效率和产量的关系. 麦类作物学报, 2003, 23(3): 41–44 Huang L, Zhang Z B, Cui Y T, Liu M Y, Chai S X, Chen Z B. Relationship between cuticular wax content and water use efficiency of leaf and yield in wheat. J Triticeae Crops, 2003, 23(3): 41–44 (in Chinese with English abstract) [2]Johnson D A, Richards R A, Turner N C. Yield, water relations, gas exchange, and surface reflectances of near-isogenic wheat lines differing in glaucousness. Crop Sci, 1983, 23: 318–325 [3]Foulkes M J, Sylvester-Bradley R, Weightman R, Weightman, Snape J W. Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Res, 2007, 103: 11–24 [4]FAO. 2013. Drought. http://www.fao.org/docrep/017/aq191e/aq191e.pdf [5]柴凌燕, 董易凡, 李士伟, 史团省. 植物角质膜及其渗透性与抗旱性研究进展. 植物研究, 2010, 30: 763–768 Chai L Y, Dong Y F, Li S W, Shi T X. Research progress in permeability and drought resistance of plant cuticular. Bull Bot Res, 2010, 30: 763–768 (in Chinese with English abstract) [6]李魏强, 张正斌, 李景娟. 植物表皮蜡质与抗旱及其分子生物学.植物生理与分子生物学报, 2006, 32: 505–512 Li W Q, Zhang Z B, Li J J. Plant epicuticular cuticular wax and drought resistance as well as its molecular biology. J Plant Physiol Mol Biol, 2006, 32: 505–512 (in Chinese with English abstract) [7]李婧婧, 黄俊华, 谢树成. 植物蜡质及其与环境的关系. 生态学报, 2011, 31: 565–574 Li J J, Huang J H, Xie S C. Plant cuticular wax and its response to environmental conditions: an overview. Acta Ecol Sin, 2011, 31: 565–574 (in Chinese with English abstract) [8]Pollard M, Beisson F, Li Y H, Ohlrogge J B. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci, 2008, 13: 236–246 [9]Kunst L, Samuel L. Plant cuticles shine: advances in cuticular wax biosynthesis and export. Plant Biol, 2009, 12: 721–727 [10]Bianchi G, Lupotto E, Borghi B, Corbellini M. Cuticular cuticular wax of wheat. The effects of chromosomal deficiencies on the biosynthesis of cuticular wax components. Planta, 1980, 148: 328–331 [11]Suh M C, Samuels A L, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F. Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis. Plant Physiol, 2005, 139: 1649–1665 [12]Premchandra G S, Saneoka H, Fujita K, Ogata S. Leaf water relations osmotic adjustment cell membrane stability epicuticular cuticular wax load and growth as affected by increasing water deficit in Sorghum. J Exp Bot, 1992, 43: 1569–1576 [13]Bames J D, Percy K E, Poul N D. The influence of UV-B radiation on the physicochemical nature of tobacco (Nicotiana tabacum L.) leaf surface. J Exp Bot, 1996, 47: 99–109 [14]Eigenbrode S D, Espelie K E. Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol, 1995, 40: 171–194 [15]Kosma D K, Jill A, Nemacheck. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J, 2010, 63: 31–43 [16]王美芳, 陈巨莲, 原国辉, 雷振生, 吴政卿, 赵献林. 植物表面蜡质对植食性昆虫的影响研究进展. 生态环境学报, 2009, 18: 1155–1160 Wang M F, Chen J L, Yuan G H, Lei Z S, Wu Z Q, Zhao X L. Effects of plant epicuticular cuticular waxes on phytophagous insects behaviour. Ecol Environ Sci, 2009, 18: 1155–1160 (in Chinese with English abstract) [17]刘勇, 陈巨莲, 程登发. 不同小麦品种(系)叶片表面蜡质对两种麦蚜取食的影响. 应用生态学报, 2007, 18: 1785-1788 Liu Y, Chen J L, Cheng D F. Effects of wheat leaf surface cuticular waxes on the feeding of two wheat aphid species. Chin J Appl Ecol, 2007, 18: 1785–1788 (in Chinese with English abstract) [18]李希峰, 董娜. 小麦近等基因系的构建及应用进展. 安徽农业科学, 2012, 40: 2577–2579 Li X F, Dong N. Progress in construction and application of near-isogenic line in wheat. J Anhui Agric Sci, 2012, 40: 2577–2579 (in Chinese with English abstract) [19]Zadoks J C, Chang T T, Konzak C F. A decimal code for growth stages of cereals. Weed Res, 1974, 14: 415–421 [20]Adamski N M, Bush M S, Simmonds J, Turner A S, Mugford S G, Jones A, Findlay K, Pedentchouk N, von Wettstein-Knowles P, Uauy C. The Inhibitor of wax 1 locus (Iw1) prevents formation of β-and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS. Plant J, 2013, 746: 989–1002 [21]Zhang Z, Wang W, Li W. Genetic interactions underlying the biosynthesis and inhibition of β-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS One, 2013, 8: e54129 [22]李鹏民, 高辉远, Strasser R. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 2005, 31: 559–566 Li P M, Gao H Y, Strasser R. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Acta Photophysiol Sin, 2005, 31: 559–566 (in Chinese with English abstract) [23]Strasser R, Tsimill-Michael M, Srivastava A. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee, eds. Advances in Photosynthesis and Respiration. Volume 19: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Berlin: Springer, 2004. pp 321–362 [24]Fischer R A, Maurer R. Drought resistance in spring wheat cultivars: I. Grain yield responses. Aust J Agric Res, 1978, 29: 897–912 [25]Rosielle A A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci, 1981, 21: 943–946 [26]Fleury D, Jefferies S, Kuchel H, Langridge P. Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot, 2010, 61: 3211–3222 [27]Piao S, Ciais P, Huang Y, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J. The impacts of climate change on water resources and agriculture in China. Nature, 2010, 467: 43–51 [28]Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol, 2003, 6: 410–417 [29]Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol, 2004, 161: 1189–1202 [30]Yordanov I, Velikova V, Tsonev T. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica, 2000, 38: 171-186 [31]Parent B, Shahinnia F, Maphosa L, Berger B, Rabie H, Chalmers K, Langridge, Fleury D. Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. J Exp Bot, 2015, 66: 5481–5492 [32]高杨. 小麦叶片表皮蜡质的测定及其对光合和农艺性状的效应分析. 西北农林科技大学硕士论文, 陕西杨凌, 2014. pp 21–34 Gao Y. Determination of Epidermal Wax Content in Wheat Leaves and Analysis on Its Effect on Photosynthetic and Agronomic Traits. MS Thesis of Northwest A&F University, Yangling, China, 2014. pp 21–34 (in Chinese with English abstract) [33]Mir R R, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney R K. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet, 2012, 125: 625–645 [34] Tuberosa R, Maccaferri M. Genomics approaches to dissect the genetic basis of drought resistance in durum wheat. In: Yasunari Q, Shigeo T, Hirokazu H eds. Advances in Wheat Genetics: from Genome to Field. Springer, Japan, 2015. pp 213–223

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!