[1] Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lü S, Joubès J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151: 1918–1929
[2] Ni Y, Xia R E, Li J N. Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiol Plant, 2014, 36: 2481–2490
[3] 倪郁, 宋超, 王小清. 低温胁迫下拟南芥表皮蜡质的响应机制. 中国农业科学, 2014, 47: 252–261
Ni Y, Song C, Wang X Q. Investigation on response mechanism of epicuticular wax on Arabidopsis thaliana under cold stress. Sci Agric Sin, 2014, 47: 252–261 (in Chinese with English abstract)
[4] 倪郁, 宋超, 王小清. 核盘菌侵染对拟南芥表皮蜡质结构及化学组成的影响. 生态学报, 2014, 34: 4160–4166
Ni Y, Song C, Wang X Q. Effects of Sclerotinia sclerotiorum on the morphology and chemical constituents of epicuticular wax in Arabidopsis thaliana stems. Acta Ecol Sin, 2014, 34: 4160–4166 (in Chinese with English abstract)
[5] Cajustea J F, González-Candelasa L, Veyrat A, García-Breijo F J, Reig-Arminana J, Lafuente M T. Epicuticular wax content and morphology as related to ethylene and storage performance of ‘Navelate’ orange fruit. Postharvest Biol Tec, 2010, 55: 29–35
[6] Curry E. Effects of 1-MCP applied postharvest on epicuticular wax of apples (Malus domestica Borkh.) during storage. J Sci Food Agric, 2008, 88: 996–1006
[7] Macková J, Vašková M, Macek P, Hronková M, Schreiber L, Šantr??ek J. Plant response to drought stress simulated by ABA application: changes in chemical composition of cuticular waxes. Environ Exp Bot, 2013, 86: 70–75
[8] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23: 1138–1152
[9] Baker E A. The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytol, 1974, 73: 955–966
[10] Grant R H, Heisler G M, Gao W, Jenks M. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. Agric For Meteorol, 2003, 120: 127–139
[11] Khan M I, Fatma M, Per T S. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci, 2015, 6: 462–478
[12] Cheong J J, Yang D C. Methyl jasmonate as a vital substance in plants. Trends Genet, 2003, 19: 409–413
[13] Morgan P W, Drew M C. Ethylene and plant responses to stress. Physiol Plant, 1997, 100: 620–630
[14] Leide J, Hildebrandt U, Vogg G, Riederer M. The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. J Plant Physiol, 2011, 168: 871–877
[15] Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opins Plant Biol, 2002, 5: 430–436
[16] Broun P, Poindexter P, Osborne E, Jiang C Z, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 4706–4711
[17] Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16: 2463–2480
[18] Ni Y, Guo Y J, Wang J, Xia R E, Wang X Q, Ash G, Li J N. Responses of physiological indexes and leaf epicuticular waxes of Brassica napus to Sclerotinia sclerotiorum infection. Plant Pathol, 2014, 63: 174–184
[19] Kosma D K, Nemacheck J A, Jenks M A, Williams C E. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J, 2010, 63: 31–43
[20] Garbay B, Tautu M T, Costaglioli P. Low level of pathogenesis-related protein 1 mRNA expression in 15-day-old Arabidopsis cer6-2 and cer2 eceriferum mutants. Plant Sci, 2007, 172: 299–305
[21] Staswick P E, Su W, Howell S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA, 1992, 89: 6837–6840
[22] 李延安, 祁林林, 孙加强, 刘宏宇, 李传友. 茉莉酸诱导侧根形成缺陷突变体asa1-1抑制子(soa)的鉴定与遗传分析. 遗传, 2011, 33: 1003–1010
Li Y A, Qi L L, Sun J Q, Liu H Y, Li C Y. Genetic screening and analysis of suppressors of asa1-1 (soa) defective in jasmonate-mediated lateral root formation in Arabidopsis. Hereditas, 2011, 33: 1003–1010 (in Chinese with English abstract)
[23] Boughton A J, Hoover K, Felton G W. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol, 2005, 31: 2211–2216
[24] Holloway P J, Brown G A, Baker E A, Macey M J K. Chemical composition and ultrastructure of the epicuticular wax in three lines of Brassica napus (L). Chem Phys Lipids, 1977, 19: 114–127
[25] Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231: 1089–1100
[26] Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubes J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156: 29–45
[27] Zhang J Y, Broeckling C D, Sumner L W, Wang Z Y. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol, 2007, 64: 265–278
[28] Oliveira A F M, Meirelles S T, Salatino A. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. An Acad Bras Cienc, 2003, 75: 431–439
[29] Yang M, Yang Q Y, Fu T D, Zhou Y M. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep, 2011, 30: 373–388
[30] Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy A A, Riederer M. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase. J Exp Bot, 2004, 55: 1401–1410
[31] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205–227
[32] Thomma B P H J, Eggermont K, Penninckx I A M A, Mauch-Mani B, Vogelsang R, Cammue B P A, Broeckaert W. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA, 1998, 95: 15107–15111 |