欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (01): 133-140.doi: 10.3724/SP.J.1006.2017.00133

• 研究简报 • 上一篇    下一篇

花生栽培种与野生种(Arachis oteroi)人工杂交双二倍体的创制和鉴定

李丽娜1,2,**,杜培2,**,付留洋2,3,刘华2,徐静2,秦利2,严玫2,韩锁义2,黄冰艳2,董文召2   

  1. 1河南科技大学农学院,河南洛阳471023;2河南省农业科学院经济作物研究所 / 农业部黄淮海油料作物重点实验室 / 河南省油料作物遗传改良重点实验室,河南郑州450002;3郑州大学生命科学学院,河南郑州450001
  • 收稿日期:2016-02-29 修回日期:2016-09-18 出版日期:2017-01-12 网络出版日期:2016-09-27
  • 通讯作者: 张新友, E-mail: haasz@126.com, Tel: 0371-65729560
  • 基金资助:

    研究由河南省重大科技专项(141100110600),国家现代农业产业技术体系建设专项(CARS-14)和河南省现代农业产业技术体系项目(S2012-5)资助。

Development and Characterization of Amphidiploid Derived from Interspecific Cross between Cultivated Peanut and Its Wild Relative Arachis oteroi

LI Li-Na1,2,**,DU Pei2,**,FU Liu-Yang2,3,LIU Hua2,XU Jing2,QIN Li2,YAN Mei2,HAN Suo-Yi2,HUANG Bing-Yan2,DONG Wen-Zhao2,TANG Feng-Shou2,ZHANG Xin-You2,*   

  1. 1 College of Agricultural, Henan University of Science and Technology, Luoyang 471023, China; 2 Industrial Crops Research Institute, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture / Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China; 3 School of life sciences, Zhengzhou University, Zhengzhou 450001, China
  • Received:2016-02-29 Revised:2016-09-18 Published:2017-01-12 Published online:2016-09-27
  • Contact: 张新友, E-mail: haasz@126.com, Tel: 0371-65729560
  • Supported by:

    This study was supported by the Major Technology Research and Development Program of Henan Province (141100110600), the China Agriculture Research System (CARS-14), and the Henan Provincial Agriculture Research System (S2012-05).

摘要:

花生野生种是改良花生栽培种的重要基因资源。为了利用野生花生的抗性基因,本研究利用花生栽培品种豫花9331与二倍体野生种A. oteroi人工杂交,借助胚拯救和染色体秋水仙素加倍,创制一个双二倍体杂种AmE-4,并利用荧光原位杂交和分子标记技术准确鉴定了该双二倍体。观察结果表明,AmE-4的叶片与豫花9331存在显著差异,而主茎高、侧枝长和总分枝数等性状与豫花9331差异不显著。AmE-4开花期较豫花9331推迟60 d,结实性与荚果发育状况较差,不利于AmE-4的育种利用。同时,开发了57个追踪AmE-4中A. oteroi染色体的显性或共显性SSR标记,为创制和鉴定花生栽培种A. oteroi易位系或渐渗系奠定分子基础。

关键词: 花生, 双二倍体, 花生野生种, 分子标记, 荧光原位杂交

Abstract:

Wild Arachis species are important genetic resources. To introgress resistant genes of Arachis species, developed a new amphidiploid AmE-4 through man-made cross between cultivated peanut variety Yuhua 9331 and a diploid Arachis species A. oteroi, with the assistance of following embryo rescue and chromosome doubling by colchicine treatment. AmE-4 was identified and characterized by fluorescence in situ hybridization (FISH) and SSR molecular marker. Morphological observation revealed significant differences in leaves between amphidiploid AmE-4 and Yuhua 9331, while the agronomic traits such as main stem height, length of first lateral branch and number of branches showed less difference between them. The date of first flower appearance in AmE-4 delayed sixty days compared with that in Yuhua 9331, and its pods setting and development were also poor, which would hinder its further utilization. In addition, 57 dominant or co-dominant SSR molecular markers were developed and could be used to identify translocation or introgression lines with A. oteroi chromosome fragment in future studies.

Key words: Peanut (Arachis hypogaea L.), Amphidiploid, Wild Arachis species, Molecular marker, FISH

[1] Stalker H T, Moss J P. Speciation, cytogenetics, and utilization of Arachis species. Adv Agron, 1987, 41: 1–40
[2] Holbrook C C, Stalker H T. Peanut breeding and genetic resources. Plant Breed Rev, 2003, 22: 297–356
[3] Mallikarjuna N, Jadhav D R, Reddy K, Husain F, Das K. Screening new Arachis amphidiploids and autotetraploids for resistance to late leaf spot by detached leaf technique. Eur J Plant Pathol, 2012, 132: 17–21
[4] 姜慧芳, 任小平, 黄家权, 雷永, 廖伯寿. 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质. 作物学报, 2009, 35: 25–32
Jiang H F, Ren X P, Huang J Q, Lei Y, Liao B S. Genetic variation of fatty acid components in Arachis species and development of interspecific hybrids with high oleic and low palmitic acids. Acta Agron Sin, 2009, 35: 25–32 (in Chinese with English abstract)
[5] Singh A K. Hybridization barriers among the species of Arachis L., namely of the sections Arachis (including the groundnut) and Erectoides. Genet Resour Crop Evol, 1998, 45: 41–45
[6] 张新友, 徐静, 汤丰收, 董文召, 臧秀旺, 张忠信. 花生种间杂种胚胎发育及内源激素变化. 作物学报, 2013, 39: 1127–1133
Zhang X Y, Xu J, Tang F S, Dong W Z, Zang X W, Zhang Z X. Embryonic development and changes of endogenous hormones in interspecific hybrids between peanut (A. hypogaea L.) and wild Arachis species. Acta Agron Sin, 2013, 39: 1127–1133 (in Chinese with English abstract)
[7] Mallikarjuna N, Senthilvel S, Hoisington D. Development of synthetic groundnuts (Arachis hypogaea L.) to broaden the genetic base of cultivated groundnut. Genet Resour Crop Evol, 2011, 58: 889–907
[8] Church G T, Starr J L, Simpson C E. A recessive gene for resistance to meloidogyne arenaria in interspecific Arachis spp. hybrids. Russ J Nematol, 2005, 37: 178–184
[9] 贺梁琼, 熊发前, 钟瑞春, 韩柱强, 李忠, 唐秀梅, 蒋菁, 唐荣华, 何新华. 利用SCoT标记分析花生栽培种 × A. chacoensis组合异源多倍化的早期基因组变化. 中国农业科学, 2013, 46: 1555–1563
He L Q, Xiong F Q, Zhong R C, Han Z Q, Li Z, Tang X M, Jiang J, Tang R H, He X H. Study on genome variations by using SCoT markers during allopolyploidization of the cultivated peanut × A. chacoensis. Sci Agric Sin, 2013, 46: 1555–1563 (in Chinese with English abstract)
[10] Ozias-Akins P, Singsit C, Branch W D. Interspecific hybrid inviability in crosses of Arachis hypogaea × A. stenosperma can be overcome by in vitro embryo maturation or somatic embryogenesis. J Plant Physiol, 1992, 140: 207–212
[11] Simpson C E, Starr J L. Registration of ‘COAN’ peanut. Crop Sci, 2001, 41: 918
[12] Tallury S P, Isleib T G, Stalker H T. Developing peanut cultivars with genetic resistance to early leafspot. In: Proceedings of the American Peanut Research and Educational Society, 2005. p 37
[13] 王兴军, 张新友. 花生生物技术研究. 北京: 科学出版社, 2015. p 22
Wang X J, Zhang X Y. Studies on Peanut Biotechnology. Beijing: Beijing Science Press, 2015. p 22
[14] Mallikarjuna N, Sastri D C. Morphological, cytological and disease resistance studies of the intersectional hybrid between Arachis hypogaea L. and A. glabrata Benth. Euphytica, 2002, 126: 161–167
[15] Mallikarjuna N, Hoisington D. Peanut improvement: production of fertile hybrids and backcross progeny between Arachis hypogaea and A. kretschmeri. Food Secur, 2009, 1: 457–462
[16] Stalker H T, Beute M K, Shew B B, Barker K R. Registration of two root-knot nematode-resistant peanut germplasm lines. Crop Sci, 2002, 42: 312–313
[17] Pasupuleti J, Ramaiah V, Rathore A, Rupakula A, Reddy R K, Waliyar F, Nigam S N. Genetic analysis of resistance to late leaf spot in interspecific groundnuts. Euphytica, 2013, 193: 13–25
[18] Sharma S B, Ansari M A, Varaprasad K S, Singh A K, Reddy L J. Resistance to Meloidogyne javanica in wild Arachis species. Genet Resour Crop Ev, 1999, 46: 557–568
[19] He G H, Meng R H, Newman M, Gao G Q, Pittman R N, Prakash C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2003, 3: 1–6
[20] Moretzsohn M C, Leoi L, Proite K, Guimaraes P M, Leal-Bertioli S, Gimenes M A, Martins W S, Valls J F, Grattapaglia D, Bertioli D J. A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet, 2005, 111: 1060–1071
[21] Palmieri D A, Bechara M D, Curi R A, Gimenes M A, Lopes C R. Novel polymorphic microsatellite markers in section Caulorrhizae (Arachis, Fabaceae). Mol Ecol, 2005, 5: 77–79
[22] Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S. Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004, 108: 1064–1070
[23] 范宝磊, 张耀兮, 吴仲珍, 岳霞丽, 索有瑞. 不同品系油菜花粉生活力测定方法比较. 安徽农业科学, 2012, 40: 2596–2597
Fan B L, Zhang Y X, Wu Z Z, Yue X L, Suo Y R. Comparison of different determination methods of the pollen vitality of different lines rape. J Anhui Agric Sci, 2012, 40: 2596–2597 (in Chinese with English abstract)
[24] 杜培, 张新友, 李丽娜, 黄冰艳, 易明林, 董文召, 汤丰收. 高质量花生根尖细胞染色体制片方法研究. 河南农业科学, 2013, 42(3): 31–35
Du P, Zhang X Y, Li L N, Huang B Y, Yi M L, Dong W Z, Tang F S. Study on slide preparation methods for high quality chromosomes for root tip cell of Arachis. J Henan Agric Sci, 2013, 42(3): 31–35 (in Chinese with English abstract)
[25] Robledo G, Lavia G I, Seijo G. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet, 2009, 118: 1295–1307
[26] Stalker H T, Wynne J C. cytology of interspecific hybrid in section Arachis of peanut. Peanut science, 1979, 6: 110–114
[27] Stalker H.T. Utilizing Arachis cardenasii as a source of Cercospora leafspot resistance for peanut improvement. Euphytica, 1984, 33: 529–538
[28] Company M, Stalker H T, Wynne J C. Cytology and leafspot resistance in Arachis hypogaea × wild species hybrids. Euphytica, 1982, 31: 885–893
[29] 杨小明, 组织培养中秋水仙素诱导葡萄多倍体研究, 甘肃农业大学硕士论文, 2003. p 6
Yang X M. Studies on Polyploidy Grapevine Induction by Colchicine Treatment Through Tissue Culture. MS Thesis of Gansu Agricultural University, 2003. p 6 (in Chinese with English abstract)
[30] Lavia G I, Ortiz A M, Fernández A. Karyotypic studies in wild germplasm of Arachis (Leguminosae). Genet Resour Crop Evol, 2009, 56:755–764
[31] Seijo J G, Lavia G I, Fernández A, Krapovickas A, Ducasse D, Moscone E A. Physical mapping of 5S and 18S-25S rRNA genes by FISH as evidences that A. duranensis and A. ipaensis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot, 2004, 91: 1294–1303
[32] 杜培, 刘华, 李丽娜, 秦利, 张忠信, 黄冰艳, 董文召, 汤丰收, 亓增军, 张新友. 基于顺序GISH-FISH花生栽培种的染色体分析. 中国农业科学, 2015, 48: 1854–1863
Du P, Liu H, Li L N, Qin L, Zhang Z X, Huang B Y, Dong W Z, Tang F S, Qi Z J, Zhang X Y. Chromosome analysis of peanut (Arachis hypogaea L.) based on sequential GISH-FISH. Sci Agric Sin, 2015, 48: 1854–1863 (in Chinese with English abstract)
[33] Krapovickas A, Gregory W C. Taxonomia del genero Arachis (Leguminosae). Bonplandia, 1994, 8: 1–186
[34] Jiang J M, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73: 199–212

[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[9] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[10] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[11] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[12] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[13] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[14] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[15] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!