作物学报 ›› 2017, Vol. 43 ›› Issue (01): 63-71.doi: 10.3724/SP.J.1006.2017.00063
白娜,李永祥*,焦付超,陈林,李春辉,张登峰,宋燕春,王天宇,黎裕,石云素*
BAI Na,LI Yong-Xiang*,JIAO Fu-Chao,CHEN Lin,LI Chun-Hui,ZHANG Deng-Feng,SONG Yan-Chun,WANG Tian-Yu,LI Yu,SHI Yun-Su*
摘要:
穗行数是影响玉米产量的重要因素之一,其遗传机制解析和关键基因精细定位对开展分子育种具有重要的意义。本研究以穗行数仅有4行的“四路糯选系”和多穗行自交系“农531”(18~22行)为亲本,构建了高代回交群体和次级定位群体(四路糯选系为供体亲本,农531为轮回亲本)。通过对不同类型试验群体的多环境表型鉴定和基因型鉴定,利用完备区间作图法(ICIM)进行穗行数主效QTL定位分析,将穗行数主效位点qKRN5.04定位到第5染色体136.3~140.0 Mb的区间之内;遗传效应分析发现,该位点在不同环境条件下最大可解释的表型变异为21.76%,效应值为0.80~1.76行。通过次级分离群体重组事件分析可将其进一步定位到~300 kb区间内。本研究结果不仅为分子标记辅助选择提供了实用的InDel标记,而且为玉米穗行数主效位点qKRN5.04的图位克隆和候选基因挖掘奠定了重要的基础。
[1]Li J Z, Zhang Z W, Li Y L, Wang Q L, Zhou Y G. QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor Appl Genet, 2011, 122: 771–782 [2]李成璞, 白苇, 翟立红, 陶勇生, 张祖新. 玉米穗行数QTL及其互作分析. 植物遗传资源学报, 2011, 12: 965–970 Li C P, Bai W, Zhai L H, Tao Y S, Zhang Z X. Identifying and interaction assay of QTL for row number per ear of maize. J Plant Genet Resour, 2011, 12: 965–970 (in Chinese with English abstract) [3]周强, 王平喜, 程备久, 朱苏文, 谢传晓. 玉米穗行数性状QTL的元分析. 玉米科学, 2014, 22(2): 35–40 Zhou Q, Wang P X, Cheng B J, Zhu S W, Xie C X. Meta-analysis of QTL for ear row number in maize. J Maize Sci, 2014, 22(2): 35–40 (in Chinese with English abstract) [4]谭巍巍, 李永祥, 王阳, 刘成, 刘志斋, 彭勃, 王迪, 张岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕. 在干旱和正常水分条件下玉米穗部性状QTL分析. 作物学报, 2011, 37: 235–248 Tan W W, Li Y X, Wang Y, Liu C, Liu Z Z, Peng B, Wang D, Zhang Y, Sun B C, Shi Y S, Song Y C, Yang D G, Wang T Y, Li Y. QTL mapping of ear traits of maize under different water regimes. Acta Agron Sin, 2011, 37: 235–248 (in Chinese with English abstract) [5]Yan J B, Tang H, Huang Y Q, Zheng Y L, Li J S. Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica, 2006, 149: 121–131 [6]Barazesh S, McSteen P. Barren inflorescence1 functions in organogenesis during vegetative and inflorescence development in maize. Genetics, 2008, 179: 389–401 [7]Barazesh S, Nowbakht C, McSteen P. Sparse inflorescence1, Barren inflorescence1 and Barren stalk1 promote cell elongation in maize inflorescence development. Genetics, 2009, 182: 403–406 [8]Wu X T, Skirpan A, McSteen P. Suppressor of sessile spikelets1 functions in the ramosa pathway controlling meristem determinacy in maize. Plant Physiol, 2009, 149: 205–219 [9]Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev, 2001, 15: 2755–2766 [10]Vollbrecht E, Springer P S, Goh L, Buckler E S, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature, 2005, 436: 1119–1126 [11]Clermont Y, Bortiri E. Ramosa2 encodes a lateral organ boundary domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell, 2006, 18: 574–585 [12]Chuck G, Muszynski M, Kellogg E, Hake S, Schmidt R J. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science, 2002, 298: 1238–1241 [13]Kaplinsky N J, Freeling M. Combinatorial control of meristem identity in maize inflorescences. Development, 2003, 130: 1149–1158 [14]Bomblies K, Wang R L, Ambrose B A, Schmidt R J, Meeley R B, Doebley J. Duplicate FLORICAULA/LEAFY homologs Zfl1 and Zfl2 control inflorescence architecture and flower patterning in maize. Development, 2003, 130: 2385–2395 [15]周红菊, 穆俊祥, 赵胜杰, 余四斌. 水稻高世代回交导入系耐盐性的遗传研究. 分子植物育种, 2005, 3: 716–720 Zhou H J, Mu J X, Zhao S J, Yu S B. Genetic analyses of salt tolerance in an advanced backcross population of rice. Mol Plant Breed, 2005, 3: 716-720 (in Chinese with English abstract) [16]胡利宗, 刘均革, 郭晋杰, 赵永锋, 祝丽英, 宋占权, 陈景堂. 基于玉米BC2F2群体的穗部性状QTL分析. 华北农学报, 2010, 25(4): 73–77 Hu L Z, Liu J G, Guo J J, Zhao Y F, Zhu L Y, Song Z Q, Chen J T. QTL analysis of ear traits based on BC2F2 population in maize (Zea may L.). Acta Agr Boreali-Sin, 2010, 25(4): 73–77 (in Chinese with English abstract) [17]李卫华, 王洪秋, 袁亮, 张向歌, 谢慧玲, 胡彦民, 汤继华. 利用单片段代换系群体定位玉米穗部性状的QTL. 河南农业大学学报, 2013, 47: 143–146 Li W H, Wang H Q, Yuan L, Zhang X G, Xie H L, Hu Y M, Tang J H. Mapping of the QTL for ear related traits using a series of single segment substitution lines in maize. J Henan Agric Univ, 2013, 47: 143–146 (in Chinese with English abstract) [18]齐欢欢, 段利超, 胡伟, 黄娟, 冯阳, 黄亚群, 祝丽英, 张祖新, 岳兵. 利用导入系群体对玉米产量及产量相关性状进行定位分析. 玉米科学, 2013, 21(4): 24–27 Qi H H, Duan L C, Hu W, Huang J, Feng Y, Huang Y Q, Zhu L Y, Zhang Z X, Yue B. Identification of significant loci for yield and yield-related traits in maize with introgression lines. J Maize Sci, 2013, 21(4): 24–27 (in Chinese with English abstract) [19]Li F, Jia H T, Liu L, Zhang C X, Liu Z J, Zhang Z X. Quantitative trait loci mapping for kernel row number using chromosome segment substitution lines in maize. Genet Mol Res, 2014, 13: 1707–1716 [20]Tian B H, Wang J H, Wang G Y. Confirmation of a major QTL on chromosome 10 for maize kernel row number in different environments. Plant Breed, 2014, 133: 184–188 [21]Liu L, Du Y F, Shen X M, Li M F, Sun W, Huang J, Liu Z L, Tao Y S Zheng Y L, Yan J B, Zhang Z X. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet, 2015, 11(11): e1005670. doi:10.1371/journal.pgen.1005670 [22]焦付超, 李永祥, 陈林, 刘志斋, 石云素, 宋燕春, 张登峰, 黎裕, 王天宇. 特异玉米种质四路糯的穗行数遗传解析. 中国农业科学, 2014, 47: 1256–1264 Jiao F C, Li Y X, Chen L, Liu Z Z, Shi Y S, Song Y C, Zhang D F, Li Y, Wang T Y. Genetic dissection for kernel row number in the specific maize germplasm four-rowed waxy corn. Sci Agric Sin, 2014, 47: 1256–1264 (in Chinese with English abstract) [23]Chen D H, Ronald P C. A rapid DNA min preparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999, 17: 53–57 [24]Li H, Ye G J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374 [25]Stuber C W, Edwards M D. Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize: II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639–648 [26]谭巍巍, 王阳, 李永祥, 刘成, 刘志斋, 彭勃, 王迪, 张岩, 孙宝成, 石云素, 宋燕春, 杨德光, 王天宇, 黎裕. 不同环境下多个玉米穗部性状的QTL分析. 中国农业科学, 2011, 44: 233–244 Tan W W, Wang Y, Li Y X, Liu C, Liu Z Z, Peng B, Wang D, Zhang Y, Sun B C, Shi Y S, Song Y C, Yang D G, Wang T Y, Li Y. QTL analysis of ear traits in maize across multiple environments. Sci Agric Sin, 2011, 44: 233–244 (in Chinese with English abstract) [27]吕学高, 蔡一林, 陈天青, 徐德林, 王伟林, 刘志斋, 王久光. 玉米穗部性状QTL定位. 西南大学学报(自然科学版). 2008, 30(2):64–70 Lü X G, Cai Y L, Chen T Q, Xu D L, Wang W L, Liu Z Z, Wang J G. QTL mapping for ear traits in maize (Zea mays L.). J Southwest Univ (Nat Sci Edn), 2008, 30(2): 64–70 (in Chinese with English abstract) [28]Zhuang J Y, Lin H X, Lu J, Qian H R, Hittalmani S, Huang N, Zheng K L. Analysis of QTL ? environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95: 799–808 [29]Fulton T. RFLP mapping of the rice genome. In: Rice Genetics II: Proceedings of the Second International Rice Genetics Symposium, 14?18 May 1990.2015. pp 435–442 [30]毛传澡, 程式华. 水稻农艺性状QTL定位精确性及其影响因素的分析. 农业生物技术学报, 1999, 7: 386–394 Mao C Z, Cheng S H. Analysis of accuracy and influence factor in QTL mapping about agronomic traits in rice (Oryza sativa L.). J Agric Biol, 1999, 7: 386-–394 (in Chinese with English abstract) [31]Howell P M, Lydiate D J, Marshall D F. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 348–358 [32]Zhang G D, Wang X P, Wang B, Tian Y C, Li M, Nie Y X, Peng Q C, Wang Z L. Fine mapping a major QTL for kernel number per row under different phosphorus regimes in maize (Zea mays L.). Theor Appl Genet, 2013, 126: 1545–1553 [33]Teng F, Zhai L H, Liu R X, Bai W, Wang L Q, Huo D G, Tao Y S, Zheng Y L, Zhang Z X. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013, 73: 405–416 [34]Heyndrickx K S, Klaas V. Systematic identification of functional plant modules through the integration of complementary data sources. Plant Physiol, 2012, 159: 884–901 [35]Bolduc N, Yilmaz A, Mejia-Guerra M K, Morohashi K, O’Connor D, Grotewold E, Hake S. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev, 2012, 26: 1685–1690 [36]牛林海, 杨国栋. 玉米HMG全长cDNA的克隆及其分析. 山东农业大学学报(自然科学版), 2002, 33: 239–241 Niu L H, Yang G D. Cloning and expression analysis of a full-length cDNA clone in maize. J Shandong Agric Univ (Nat Sci), 2002, 33: 239–241 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[10] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[11] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[12] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[13] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[14] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[15] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
|