欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (02): 201-209.doi: 10.3724/SP.J.1006.2017.00201

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦TaVIP1家族基因克隆、分子特性及功能分析

赵佩1,**,腾丽杰2,**,王轲1,杜丽璞1,任贤2,佘茂云3,*,叶兴国1,*   

  1. 1中国农业科学院作物科学研究所 / 国家农作物基因资源与基因改良重大科学工程, 北京 100081; 2北方民族大学生物科学与工程学院, 宁夏银川 750002; 3安徽省农业科学院作物研究所, 安徽合肥 230031
  • 收稿日期:2016-03-25 修回日期:2016-09-18 出版日期:2017-02-12 网络出版日期:2016-09-28
  • 通讯作者: 佘茂云, E-mail: ahxiaoshe@126.com; 叶兴国, E-mail: yexingguo@caas.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31401380, 31401376)资助。

Cloning, Molecular Characterization, and Functional Analysis of Wheat TaVIP1 Genes

ZHAO Pei1,**,TENG Li-Jie2,**,WANG Ke1,DU Li-Pu1,REN Xian2,SHE Mao-Yun3,*,YE Xing-Guo1,*   

  1. 1Institute of Crop Science, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing 100081; 2 College of Biology and Engineering, Beifang University of Nationalities, Yinchuan 750002, China; 3Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
  • Received:2016-03-25 Revised:2016-09-18 Published:2017-02-12 Published online:2016-09-28
  • Contact: 佘茂云, E-mail: ahxiaoshe@126.com; 叶兴国, E-mail: yexingguo@caas.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31401380, 31401376).

摘要:

植物VIP1蛋白(VirE2 interacting protein 1)与农杆菌侵染植物后T-DNA在细胞内的转运有关,影响植物转化效率,但还未见有关小麦中VIP1基因研究的报道。本研究利用in silico技术从普通小麦中克隆了TaVIP1家族基因,该家族基因全部由4个外显子构成,编码产物相似性高,与拟南芥AtVIP1蛋白质序列相似性仅为50.7%~51.4%。Southern杂交结果表明,TaVIP1基因在小麦基因组中存在3个拷贝。根据小麦3个TaVIP1基因的差异序列设计特异引物,以四倍体小麦Langdon与中国春D组染色体代换系为材料进行PCR检测,结合生物信息学分析,将小麦3个小麦TaVIP1基因分别定位在4AL、4BS和4DS染色体上。亚细胞定位分析表明,TaVIP1蛋白分布于细胞膜、细胞质和细胞核中。农杆菌转化烟草,过表达TaVIP1基因降低了烟草转化效率。小麦TaVIP1基因编码的氨基酸序列与拟南芥AtVIP1基因及烟草NtVIP1基因编码的氨基酸序列相似性很低,这可能是小麦农杆菌转化效率低的原因之一。

关键词: 小麦, TaVIP1, 烟草, 农杆菌转化

Abstract:

Plant VIP1 (VirE2 interacting protein 1) is involved in the transportation of T-DNA in plant cells after Agrobacterium infection, affecting plant transformation efficiency. However, the function of TaVIP1 is unknown. Using in silico technique, a family of TaVIP1 genes were successfully cloned from common wheat in this study. The gene family encompasses four exons and shares high similarity among its members while only 50.7%–51.4% similarity to the AtVIP1 in Arabidopsis. Southern blotting assay showed that the TaVIP1 had three allelic copies in wheat genome. The three copies of TaVIP1 were further assigned to wheat chromosomes 4AL, 4BS, and 4DS according to Blastn in the IWGSC (International Wheat Genome Sequencing Consortium) database, and experimentally confirmed by PCR using specific primers to each TaVIP1 allele based on their DNA sequences and Langdon durum disomic substitution lines. Subcellular localization analysis showed that TaVIP1 proteins were located in cell membrane, cytoplasm and nucleus. Over-expression of TaVIP1 in tobacco obviously reduced Agrobacterium-mediated transformation efficiency. The amino acid sequence encoded by TaVIP1 only had less similarity to the corresponding amino acid sequence encoded by AtVIP1 in Arabidopsis or NtVIP1 in tobacco. This might be a reason of the low transformation efficiency of wheat mediated by Agrobacterium.

Key words: Wheat, TaVIP1, Tobacco, Agrobacterium-mediated transformation

[1] Shewry P R. Wheat. J Exp Bot, 2009, 60: 1537–1553
[2] Harwood W A. Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot, 2012, 63: 1791–1798
[3] 叶兴国, 徐惠君, 杜丽璞, 何光源, 王轲, 林志珊. 小麦规模化转基因技术体系构建及其应用. 中国农业科学, 2014, 47: 4155–4171
Ye X G, Xu H J, Du L P, He G Y, Wang K, Lin Z S. Establishment and application of large scale transformation system in wheat. Sci Agric Sin, 2014, 47: 4155–4171 (in Chinese with English abstract)
[4] 叶兴国, 王新敏, 王轲, 杜丽璞, 林志珊, 徐惠君. 提高植物农杆菌转化效率辅助策略研究进展. 中国农业科学, 2012, 45: 3007–3019
Ye X G, Wang X M, Wang K, Du L P, Lin Z S, Xu H J. A review of some assisted strategies for improving the efficiency of Agrobacterium-mediated plant transformation. Sci Agric Sin, 2012, 45: 3007–3019 (in Chinese with English abstract)
[5] 赵佩, 王轲, 张伟, 杜丽璞, 叶兴国. 参与农杆菌侵染及T-DNA转运过程植物蛋白的研究进展和思考. 中国农业科学, 2014, 47: 2504–2518
Zhao P, Wang K, Zhang W, Du L P, Ye X G. Review and inspiration of plant proteins involved in the transformation processing of T-DNA initiated by Agrobacterium. Sci Agric Sin, 2014, 47: 2504–2518 (in Chinese with English abstract)
[6] Lacroix B, Citovsky V. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol, 2013, 57: 467–481
[7] Gelvin S B. Plant proteins involved in Agrobacterium-mediated genetic transformation. Ann Rev Phytopathol, 2010, 48: 45–68
[8] Liu Y K, Kong X P, Pan J W, Li D Q. VIP1: linking Agrobacterium-mediated transformation to plant immunity? Plant Cell Rep, 2010, 29: 805–812
[9] Citovsky V, Kapelnikov A, Oliel S, Zakai N, Rojas M R, Gilbertson R L, Tzfira T, Loyter A. Protein interactions involved innuclear import of the Agrobacterim VirE2 protein in vivo and in vitro. J Biol Chem, 2004, 279: 29528–29533
[10] Tzfira T, Vaidya M, Citovsky V. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in virE2 nuclear import and Agrobacterium infectivity. EMBO J, 2001, 20: 3596–3607
[11] Djamei A, Pitzschke A, Nakagami H, Raih I, Hirt H. Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science, 2007, 318: 453–456
[12] Lacroix B, Loyter A, Citovsky V. Association of the Agrobacterium T-DNA–protein complex with plant nucleosomes. Proc Natl Acad Sci USA, 2008, 105: 15429–15434
[13] Tzfira T, Vaidya M, Citovsky V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci USA, 2002, 99: 10435–11440
[14] Li J, Krichevsky A, Vaidya M, Tzfira T, Citovsky V. Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci USA, 2005, 102: 5733–5738
[15] Joppa L R, Williams N D. Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome, 1988, 30: 222–228
[16] 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新. 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004, 26: 529–531
Chen K S, Li F, Xu C J, Zhang S L, Fu C X. An efficient macro-metod of genomic DNA isolation from Actinidai Chinensis leaves. Hereditas (Beijing), 2004, 26: 529–531 (in Chinese with English abstract)
[17] Ziemienowicz A T, Merkle F, Schoumacher B, Hohn B, Rossi L. Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell, 2001, 13: 369–383
[18] Pitzschke A. Agrobacterium infection and plant defense—transformation success hangs by a thread. Front Plant Sci, 2013, 4: 305–319
[19] Shi Y, Lee L Y, Gelvin S B. Is VIP1 important for Agrobacterium-mediated transformation? Plant J, 2014, 79: 848–860
[20] 史勇. 农杆菌毒性效应因子与宿主相关蛋白互作研究及功能验证. 西北农林科技大学博士论文, 陕西杨凌, 2014
Shi Y. Interaction Study and Function Verification of Virulence Proteins and Host Factors in Agrobacterium-Mediated Transformation. PhD Dissertation of Northwest A&F University, Yangling, China, 2014 (in Chinese with English abstract)
[21] Lacroix B, Citovsky V. Characterization of VIP1 activity as a transcriptional regulator in vitro and in planta. Sci Rep, 2013, 3: 2440
[22] 娄丽娟, 史雪, 罗美中. OsVIP1 RNAi转基因水稻植株的构建. 华中农业大学学报, 2012, 31(2): 152–158
Lou L J, Shi X, Luo M Z. Construction of OsVIP1 RNAi transgenic rice plants. J Huazhong Agric Univ, 2012, 31(2): 152–158
[23] Tsugama D, Liu S, Takano T. A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis. Plant Physiol, 2012, 159: 144–155
[24] Pitzschke A, Djamei A, Teige M, Hirt H. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci USA, 2009, 16: 18414–18419

[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!