欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (03): 464-470.doi: 10.3724/SP.J.1006.2017.00464

• 研究简报 • 上一篇    

中国北部藜麦品质性状的多样性和相关性分析

胡一波,杨修仕,陆平*,任贵兴*   

  1. 中国农业科学院作物科学研究所 / 国家杂粮加工技术研发分中心,北京 100081
  • 收稿日期:2016-08-10 修回日期:2016-11-02 出版日期:2017-03-12 网络出版日期:2016-11-18
  • 通讯作者: 任贵兴, E-mail: renguixing@caas.cn, Tel: 010-62156596; 陆平, E-mail: luping@caas.cn, Tel: 010-62186625
  • 基金资助:

    本研究由科技部科技伙伴计划项目(KY201402023)和中国农业科学院科技创新工程的资助。

Diversity and Correlation of Quality Traits in Quinoa Germplasms from North China

HU Yi-Bo,YANG Xiu-Shi,LU Ping*,REN Gui-Xing*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences / National R&D Center For Coarse Cereal Processing, Beijing 100081, China
  • Received:2016-08-10 Revised:2016-11-02 Published:2017-03-12 Published online:2016-11-18
  • Contact: 任贵兴, E-mail: renguixing@caas.cn, Tel: 010-62156596; 陆平, E-mail: luping@caas.cn, Tel: 010-62186625
  • Supported by:

    This study was supported by Science and Technology Partnership Program, Ministry of Science and Technology of China (KY201402023), and the Agricultural Science and Technology Innovation Program of CAAS.

摘要:

藜麦(Chenopodium quinoa Willd.)是美洲大陆最古老的作物之一,为全世界公认的全营养谷物。为了解国内不同藜麦种质资源营养性状的相关性和差异性,本研究测定国内25份藜麦种质资源的13个品质性状指标,并对其进行相关性分析、主成分分析和聚类分析。结果表明,脂肪与总黄酮呈极显著正相关(0.55),而与赖氨酸和组氨酸呈极显著负相关(–0.52和–0.54);总多酚、总黄酮和总皂苷之间均具有极显著相关性。13个品质性状分别隶属于5个主成分,累计贡献率为92.6%。25份种质材料可以聚类为4组,在品质和遗传距离方面各组群之间差异较大。利用主成分分析和聚类分析对藜麦品质进行综合评价,可避免单一指标的片面性和不稳定性,为藜麦的利用和品质育种提供重要的科学依据。

关键词: 藜麦, 品质性状, 相关性, 主成分分析, 聚类分析

Abstract:

Quinoa (Chenopodium quinoa Willd.) is one of the oldest crops in the American continent. It has been recognized as a nutritious grain all over the world. In this experiment, thirteen indicators of quality in 25 quinoa germplasms were analyzed using principal component analysis (PCA) and cluster analysis. The fat had significantly positive correlation with total flavonoids (0.55), and remarkably negative correlation with lysine and histidine (–0.52 and –0.54); and the correlation among total flavonoids, polyphenols and saponins was positively significant. Thirteen traits belonged in five principal components, with a total contribution rate of 92.6%. Twenty-five quinoa germplasms were divided into four categories through cluster analysis, and there were larger different in genetic distance and quality between categories. It is an effective way to comprehensively evaluate the quinoa quality by PCA and cluster analysis, which could not only avoid the bias and the instability of single factor analysis, but also provide an important scientific basis for quinoa application and quality breeding.

Key words: Quinoa, Quality traits, Correlation, Principal component analysis, Cluster analysis

[1] Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D, Milovanovic M. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J Cereal Sci, 2012, 55: 132–138
[2] James L E A. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv Food Nutr Res, 2009, 58: 1–31
[3] Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez E A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa Willd.), an ancient Andean grain: a review. J Sci Food Agric, 2010, 90: 2541–2547
[4] Valencia-Chamorro S A. Quinoa. Encyclopedia of Food Science and Nutrition. Waltham, US: Academic Press, 2003. pp 4895–4902
[5] Kehrer J P, Smith C V. Free Radicals in Biology: Sources, Reactivities, and Roles in the Etiology of Human Diseases. Natural Antioxidants in Human Health and Disease. Oregon, US: Academic Press, 1994. pp 25–62
[6] Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci, 2005, 45: 287–306
[7] Woldemichael G M, Wink M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J Agric Food Chem, 2001, 49: 2327–2332
[8] Estrada A, Li B, Laarveld B. Adjuvant action of Chenopodium quinoa saponins on the induction of antibody responses to intragastric and intranasal administered antigens in mice. Comp Immunol Micro, 1998, 21: 225–236
[9] Repo-Carrasco-Valencia R A, Encina C R, Binaghi M J, Greco C B, Ronayne de Ferrer P A. Effects of roasting and boiling of quinoa, kiwicha and kañiwa on composition and availability of minerals in vitro. J Sci Food Agric, 2010, 90: 2068–2073
[10] Miranda M, Vega-Gálvez A, Martínez E A, López J, Marín R, Aranda M, Fuentes F. Influence of contrasting environments on seed composition of two quinoa genotypes: nutritional and functional properties. Chil J Agric Res, 2013, 73: 108–116
[11] Tang Y, Li X, Chen P X, Zhang B, Hernandez M, Zhang H, Tsao R. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem, 2015, 174: 502–508
[12] 刘浩, 胡一波, 任贵兴. 杂粮黄酒的氨基酸组成评价及抗氧化研究. 食品工业科技, 2015, 36: 343–346
Liu H, Hu Y B, Ren G X. Amino acid composition analysis and antioxidant research of Chinese coarse cereal wine. Sci Technol Food Ind, 2015, 36: 343–346 (in Chinese with English abstract)
[13] Abderrahim F, Huanatico E, Repo-Carrasco-Valencia R, Arribas S M, Gonzalez M C, Condezo-Hoyos L. Effect of germination on total phenolic compounds, total antioxidant capacity, Maillard reaction products and oxidative stress markers in canihua (Chenopodium pallidicaule). J Cereal Sci, 2012, 56: 410–417
[14] 张文杰, 孙永敢, 申瑞玲, 董吉林. 藜麦的主要营养成分, 矿物元素及植物化学物质含量测定. 郑州轻工业学院学报(自然科学版), 2015, 30: 17–21
Zhang W J, Sun Y G, Shen R L, Dong J L. Determination of main nutritional component, mineral element and phytochemical in Chenopodium quinoa Willd. J Zhengzhou Univ Light Ind (Nat Sci Edn), 2015, 30(5): 17–21 (in Chinese with English abstract)
[15] Tártara S C, Manifesto M M, Bramardi S J, Bertero H D. Genetic structure in cultivated quinoa (Chenopodium quinoa Willd.), a reflection of landscape structure in Northwest Argentina. Conserv Genet, 2012, 13: 1027–1038
[16] Curti R N, Andrade A J, Bramardi S, Velásquez B, Daniel Bertero H. Ecogeographic structure of phenotypic diversity in cultivated populations of quinoa from Northwest Argentina. Ann Appl Biol, 2012, 160: 114–125
[17] Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez E A. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric, 2010, 90: 2541–2547
[18] Repo-Carrasco-Valencia R, Hellström J K, Pihlava J M, Mattila P H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem, 2010, 120: 128–133
[19] Mastebroek H D, Limburg H, Gilles T, Marvin H J P. Occurrence of sapogenins in leaves and seeds of quinoa (Chenopodium quinoa Willd). J Sci Food Agric, 2000, 80: 152–156
[20] 杨雪峰, 齐宁, 林红, 刘广阳, 张晓波, 吴岩, 金海涛. 不同类型大豆蛋白质, 脂肪含量与异黄酮含量的相关性研究. 大豆科学, 2007, 26: 705–708
Yang X F, Qi N, Lin H, Liu G Y, Zhang X B, Wu Y, Jin H T. Correlation between isoflavones content and protein and oil content in different soybean germplasms. Soybean Sci, 2007, 26: 705–708 (in Chinese with English abstract)
[21] 黄明伟, 于寒松, 刘瑞雪, 李松, 姜丽冬, 胡耀辉. 中国北方地区大豆主栽品种五种成分检测与分析. 中国食物与营养, 2015, 21(8): 31–34
Huang M W, Yu H S, Liu R X, Li S, Jiang L D, Hu Y H. Research and thinking of boosting development of “three brands and one Sigh” cause in China. Food Nutr China, 2015, 21(8): 31–34 (in Chinese with English abstract)
[22] Qin P, Song W, Yang X, Sun S, Zhou X, Yang R, Ren G. Regional distribution of protein and oil compositions of soybean cultivars in China. Crop Sci, 2014, 54: 1139–1146
[23] Souza J N, Silva E M, Loir A, Rees J F, Rogez H, Larondelle Y. Antioxidant capacity of four polyphenol-rich Amazonian plant extracts: A correlation study using chemical and biological in vitro assays. Food Chem, 2008, 106: 331–339
[24] 韩立德, 盖钧镒, 邱家驯, 喻德跃. 菜用大豆感官品质性状遗传变异及品质育种目标性状分析. 植物遗传资源学报, 2003, 4: 16–20
Han L D, Gai J Y, Qiu J X, Yu D Y. Genetic variation and breeding objective of sensory quality traits of vegetable soybean. J Plant Genet Resour, 2003, 4: 16–20 (in Chinese with English abstract)
[25] 殷冬梅, 张幸果, 王允, 崔党群. 花生主要品质性状的主成分分析与综合评价. 植物遗传资源学报, 2011, 12: 507–512
Yin D M, Zhang X G, Wang Y, Cui D Q. Principal component analysis and comprehensive evaluation on quality traits of peanut parents. J Plant Genet Resour, 2011, 12: 507–512 (in Chinese with English abstract)

[1] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[2] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[3] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[4] 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展[J]. 作物学报, 2022, 48(1): 15-26.
[5] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[6] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[7] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[8] 张瑞栋,肖梦颖,徐晓雪,姜冰,邢艺凡,陈小飞,李邦,艾雪莹,周宇飞,黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定[J]. 作物学报, 2020, 46(6): 889-901.
[9] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[10] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[11] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[12] 纪龙,申红芳,徐春春,陈中督,方福平. 基于非线性主成分分析的绿色超级稻品种综合评价[J]. 作物学报, 2019, 45(7): 982-992.
[13] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[14] 时丕彪,何冰,费月跃,王军,王伟义,魏福友,吕远大,顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析[J]. 作物学报, 2019, 45(12): 1841-1850.
[15] 赵佳佳,马小飞,郑兴卫,郝建宇,乔玲,葛川,王爱爱,张树伟,张晓军,姬虎太,郑军. 不同水分条件下HMW-GS对小麦品质的影响[J]. 作物学报, 2019, 45(11): 1682-1690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!