欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (08): 1128-1138.doi: 10.3724/SP.J.1006.2017.01128

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米SNAC基因的遗传变异及耐旱性调控

李国君1,3,**,马艺文2,3,**,徐丹阳3,吴永波3,宋洁3,王楠3,郝转芳3,*,赵娟1,*   

  1. 1山西农业大学农学院,山西太谷030801;2吉林省通化市农业科学研究院,吉林梅河口135007;3中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2016-11-29 修回日期:2017-04-20 出版日期:2017-08-12 网络出版日期:2017-05-11
  • 通讯作者: 李国君,E-mail:liguojun911@163.com,Tel:18734422015;马艺文,E-mail:mayiwen3070@163.com,Tel:13943529373
  • 基金资助:

    本研究由国家自然科学基金重大国际合作项目(31661143010)和面上项目(31271735)资助。

Genetic Variations and Drought Tolerance of SNAC Genes in Common Maize Inbred Lines of China

LIGuo-Jun1,3,**,MAYi-Wen2,3,**,XUDan-Yang3,WUYong-Bo3,SONGJie3,WANGNan3,HAOZhuan-Fang3,*,ZHAOJuan1,*   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, China; 2 Tonghua Academy of Agricultural Sciences, Tonghua 135007, China; 3 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2016-11-29 Revised:2017-04-20 Published:2017-08-12 Published online:2017-05-11
  • Contact: LI Guojun,E-mail:liguojun911@163.com,Tel:18734422015;Ma Wenyi,E-mail:mayiwen3070@163.com,Tel:13943529373
  • Supported by:

    ThisstudywassupportedbytheNationalNaturalScienceFoundationofChina(31661143010;31271735).

摘要:

以我国玉米育种中常用的16份自交系为材料,通过对SNAC(Stress-responsive NAM, ATAF1/2, CUC2)基因编码区及上游启动子区800bp核苷酸序列进行测序,检测SNAC基因在不同杂种优势类群材料中的遗传变异。在12个SNAC基因中,其中有4个基因在上游800bp区检测到遗传变异,有4个基因变异位点超过30个,多态性较高。虽然大多数SNAC基因变异以SNP(Single nucleotide polymorphism)为主,但在ZmNAC031467基因中检测到较多的插入缺失变异(In/Del),达到基因总遗传变异的63.3%。通过PLACE软件对上游启动子有变异的4个基因进行3种耐逆结合元件的预测,结果显示4个基因均含有3种耐逆结合元件,但是基因突变对启动子结合元件的影响较小。再对检测到的遗传变异进行核苷酸多态性分析和中性检验,有7个SNAC基因核苷酸多态性较高,其中ZmNAC080308基因的多态性达到0.00962,推测这些基因在遗传漂移过程中受自然选择影响较大。利用T检验初步发现ZmNAC070395ZmNAC080398基因的2个变异位点与耐旱相关性状关联,为进一步分析SNAC基因核苷酸变异与耐旱性状的关系提供一定的借鉴。

关键词: 玉米, SNAC基因, 遗传变异, 耐旱性

Abstract:

The coding regions and their upstream 800 bp promoter regions of SNAC genes (Sress-responsive NAM, ATAF1/2, CUC2) were sequenced in 16 maize inbred lines commonly used in China. Among 12 SNAC genes, genetic variations in promoter region were only identified in four SNAC genes, and more than 30 variations were identified in four SNAC genes, showing higher polymorphism in the four genes than other in SNAC genes. Although most of the SNAC genes were mainly SNP (Single nucleotide polymorphism) mutations, more insertion/deletion mutations were detected in ZmNAC031467 gene, reaching 63.3% of the total genetic variations. The PLACE software was used to predict three kinds of stress-tolerant binding elements in SNAC gene, but little effect was found to be related with the variations. Additionally,high nucleotide polymorphisms were identified in seven SNAC genes, especially with the highest π value of 0.00962 in ZmNAC030308, which suggested that they were greatly influenced by natural selection in the genetic drift. With the T-test, two mutations of ZmNAC070395 and ZmNAC080398 genes were associated with drought-tolerant traits,whichprovides references for further analysing the relationship between nucleotide variation in SNAC and drought tolerance traits.

Key words: 玉米, SNAC基因, 遗传变异, 耐旱性

[1]李月.棉花逆境胁迫应答Trihelix转录因子的鉴定及功能分析.石河子大学博士学位论文,新疆石河子,2013
LiY.TheIdentificationofTrihelixTranscriptionFactorandFunctionalAnalysisinResponsetoStressinCotton.Ph.D.DissertationofShiheziUniversity,Shihezi,China,2013(inChinesewithEnglishabstract)
[2]陈儒钢,巩振辉,逯明辉,李大伟,黄炜.植物抗逆反应中的转录因子网络研究进展.农业生物技术学报,2010,18(1):126–134
ChenRG,GongZH,LuMH,LiDW,HuangW.Researchadvancedofthetranscriptionfactorsnetworksrelatedtoplantadverseenvironmentalstress.JAgricBiotechnol,2010,18(1):126–134(inChinesewithEnglishabstract)
[3]康桂娟,曾日中,聂智毅,黎瑜,代龙军,段翠芳.植物NAC转录因子的研究进展.生物技术通报,2012,(11):21–26
KangGJ,ZengRZ,NieZY,LiY,DaiLJ,DuanCF.ResearchprogressofplantNACtranscriptionfactors.BiotechnolBull,2012,11:21–26(inChinesewithEnglishabstract)
[4]SouerE,HouwelingenVA,KloosD,MolJ,KoesR.Thenoapicalmeristemgeneofpetuniaisrequiredforpatternformationinembryosandflowersandisexpressedatmeristemandprimordialboundaries.Cell,1996,85:159–170
[5]AidaM,IshidaT,FukakiH,FujisawaH,TasakaM.GenesinvolvedinorganseparationinArabidopsis:ananalysisofthecup-shapedcotyledonmutant.PlantCell,1997,9:841–857
[6]TranLS,NakashimaK,SakumaY,SimpsonSD,FujitaY,MaruyamaK,FujitaM,SekiM,ShinozakiK,Yamaguchi-ShinozakiK.IsolationandfunctionalanalysisofArabidopsisstress-inducibleNACtranscriptionfactorsthatbindtoadrought-responsivecis-elementintheearlyresponsivetodehydrationstress1promoter.PlantCell,2004,16:2481–2498
[7]MitsudaN,HisaboriT,TakeyasuK,SatoMH.VOZ;isolationandcharacterizationofnovelvascularplanttranscriptionfactorswithaone-zincfingerfromArabidopsisthaliana.PlantCellPhysiol,2004,45:845–854
[8]FangYJ,YouJ,XieKB,XieWB,XiongLZ.Systematicsequenceanalysisandidentificationoftissue-specificorstress-responsivegenesofNACtranscriptionfactorfamilyinrice.MolGenetGenomics,2008,280:535–546
[9]ShenH,YinYB,ChenF,XuY,DixonRA.AbioinformaticanalysisofNACgenesforplantcellwalldevelopmentinrelationtolignocellulosicbioenergyproduction.BioEnergyRes,2009,2:217–232
[10]NuruzzamanM,ManimekalaiR,SharoniAM,SatohK,KondohH,OokaH,KikuchiS.Genome-wideanalysisofNACtranscriptionfactorfamilyinrice.Gene,2010,465:30–44
[11]NakashimaK,TakasakiH,MizoiJ,ShinozakiK,Yamaguchi-ShinozakiK.NACtranscriptionfactorsinplantabioticstressresponses.BiochimBiophysActa,2012,1819:97–103
[12]RiechmannJL,HeardJ,MartinG,ReuberL,JiangC,KeddieJ,AdamL,PinedaO,RatcliffeOJ,SamahaRR,CreelmanR,PilgrimM,BrounP,ZhangJZ,GhandehariD,ShermanBK,YuG.Arabidopsistranscriptionfactors:genome-widecomparativeanalysisamongeukaryotes.Science,2000,290:2105–2110
[13]LuM,YingS,ZhangDF,ShiYS,SongYC,WangTY,LiY.Amaizestress-responsiveNACtranscriptionfactor,ZmSNAC1,confersenhancedtolerancetodehydrationintransgenicArabidopsis.PlantCellRep,2012,31:1701–1711
[14]MaoHD,WangHW,LiuSX,LiZG,YangXH,YanJB,LiJS,PhanTranLS,QinF.AtransposableelementinaNACgeneisassociatedwithdroughttoleranceinmaizeseedlings.NatCommun,2015,6:8326
[15]LiuSS,HaoZF,WengJF,LiMS,ZhangDG,PanTG,ZhangSH,LiXH.Identificationoftwofunctionalmarkersassociatedwithdroughtresistanceinmaize.MolBreed,2015,35:1–10
[16]HaoZF,LiXH,SuZJ,XieCX,LiMS,LiangXL,WengJF,ZhangDG,LiL,ZhangSH.Aproposedselectioncriterionfordroughtresistanceacrossmultipleenvironmentsinmaize.BreedSci,2011,61:101–108
[17]张世煌.商业育种只需要两个杂种优势群.种子科技,2014,(7):7–8
ZhangSH.Onlyneedtwoheteroticgroupsincommercialbreeding.SeedScience&Technology,2014,(7):7–8(inChinese)
[18]MurrayMG,ThompsonWF.RapidisolationofhighmolecularweightplantDNA.NuclAcidsRes,1980,8:4321–4326
[19]LiL,MaYW,ZhangSH,HaoZF,LiXH.ZeamaysNACtranscriptionfactorfamilymembers:theirgenomiccharacteristicsandrelationshipwithdroughtstress.ResJBiotechnol,2015,1:63–77
[20]ZhaoY,ZhouYQ,JiangHY,LiXY,GanDF,PengXJ,ZhuSW,ChengBJ.Systematicanalysisofsequencesandexpressionpatternsofdrought-responsivemembersoftheHD-Zipgenefamilyinmaize.PLoSOne,2011,6:e28488
[21]NeiM,LiWH.Mathematicalmodelforstudyinggeneticvariationintermsofrestrictionendonucleases.ProcNatlAcadSciUSA,1979,10:5269–5273
[22]周琦,王文.DNA水平自然选择作用的检测.动物学研究,2004,25(1):73–80
ZhouQ,WangW.DetectingnaturalselectionattheDNAlevel.ZoolRes,2004,25(1):73–80(inChinesewithEnglishabstract)
[23]李伟,韩蕾,钱永强,孙振元.植物NAC转录因子的种类、特征及功能.应用与环境生物学报,2011,17:596–606
LiW,HanL,QianYQ,SunZY.CharacteristicsandfunctionsofNACtranscriptionfactorsinplants.ChinJApplEnvironBiol,2011,17:596–606(inChinesewithEnglishabstract)
[24]HuHH,DaiMQ,YaoJL,XiaoBZ,LiXH,ZhangQF,XiongLZ.OverexpressingaNAM,ATAF,andCUC(NAC)transcriptionfactorenhancesdroughtresistanceandsalttoleranceinrice.ProcNatlAcadSciUSA,2006,103:12987–12992
[25]KanedaT,TagaY,TakaiR,IwanoM,MatsuiH,TakayamaS,IsogaiA,CheF.ThetranscriptionfactorOsNAC4isakeypositiveregulatorofplanthypersensitivecelldeath.EMBOJ,2009,28:926–936
[26]NakayamaA,FukushimaS,GotoS,MatsushitaA,ShimonoM,SuganoS,JiangCJ,AkagiA,YamazakiM,InoueM,TakatsujiH.Genome-wideidentificationofWRKY45-regulatedgenesthatmediatebenzothiadiazole-induceddefenseresponsesinrice.BMCPlantBiol,2013,13:1–11
[27]SongSY,ChenY,ChenJ,DaiXY,ZhangWH.PhysiologicalmechanismsunderlyingOsNAC5-dependenttoleranceofriceplantstoabioticstress.Planta,2011,234:331–345
[28]OhnishiT,SugaharaS,YamadaT,KikuchiK,YoshibaY,HiranoHY,TsutsumiN.OsNAC6,amemberoftheNACgenefamily,isinducedbyvariousstressesinrice.GenesGenetSyst,2005,80:135–139
[29]HuHH,YouJ,FangYJ,ZhuXY,QiZY,XiongLZ.CharacterizationoftranscriotionfactorgeneSNAC2conferringcoldandsalttoleranceinrice.PlantMolBiol,2008,67:169–18
[30]FujitaM,FujitaY,MaruyamaK,SekiM,HiratsuK,Ohme-TakagiM,TranLS,Yamaguchi-ShinozakiK,ShinozakiK.Adehydration-inducedNACprotein,RD26,isinvolvedinanovelABA-dependentstress-signalingpathway.PlantJ,2004,39,863–876
[31]LuPL,ChenNZ,AnR,SuZ,QiBS,RenF,ChenJ,WangXC.Anoveldrought-induciblegene,ATAF1,encodesaNACfamilyproteinthatnegativelyregulatestheexpressionofstress-responsivegenesinArabidopsis.PlantMolBiol,2007,63:289–305
[32]WuJ,WangLF,WangSM.Comprehensiveanalysisanddiscoveryofdrought-relatedNACtranscriptionfactorsincommonbean.BMCPlantBiol,2016,16:193
[33]SekiM,NarusakaM,AbeH,KasugaM,Yamaguchi-ShinozakiK,CarninciP,HayashizakiY,ShinozakiK.Monitoringtheexpressionpatternof1300Arabidopsisgenesunderdroughtandcoldstressesbyusingafull-lengthcDNAmicroarray.PlantCell,2001,13:61–72
[34]FowlerS,ThomashowMF.ArabidopsistranscriptomeprofilingindicatesthatmultipleregulatorypathwaysareactivatedduringcoldacclimationinadditiontotheCBFcoldresponsepathway.PlantCell,2002,14:1675–1690
[35]MaruyamaK,SakumaY,KasugaM,ItoY,SekiM,GodaH,ShimadaY,YoshidaS,ShinozakiK,Yamaguchi-ShinozakiK.Identificationofcold-inducibledownstreamgenesoftheArabidopsisDREB1A/CBF3transcriptionalfactorusingtwomicroarraysystems.PlantJ,2004,38:982–993
[36]ShinozakiK,Yamaguchi-ShinozakiK.Genenetworksinvolvedindroughtstressresponseandtolerance.JExpBot,2007,58:221–227
[37]ChoiH,HongJ,HaJ,KangJ,KimSY.ABFs,afamilyofABA-responsiveelementbindingfactors.JBiolChem,2000,275:1723–1730
[38]UnoY,FurihataT,AbeH,YoshidaR,ShinozakiK,Yamaguchi-ShinozakiK.Arabidopsisbasicleucinezippertranscriptionfactorsinvolvedinanabscisicacid-dependentsignaltransductionpathwayunderdroughtandhigh-salinityconditions.ProcNatlAcadSciUSA,2000,97:11632–11637
[39]NakashimaK,TranLS,VanNguyenD,FujitaM,MaruyamaK,TodakaD,ItoY,HayashiN,ShinozakiK,Yamaguchi-ShinozakiK.FunctionalanalysisofaNAC-typetranscriptionfactorOsNAC6involvedinabioticandbioticstress-responsivegeneexpressioninrice.PlantJ,2007,51:617–630
[40]SakumaY,LiuQ,DubouzetJG,AbeH,ShinozakiK,Yamaguchi-ShinozakiK.DNA-bindingspecificityoftheERF/AP2domainofArabidopsisDREBs,transcriptionfactorsinvolvedindehydration-andcold-induciblegeneexpression.BiochemBiophysResCommun,2002,290:998–1009
[41]赵洪阳.水稻抗旱基因分子进化研究.华中农业大学硕士学位论文,湖北武汉,2012
ZhaoHY.MolecularEvolutionofDrought-ResistantGenesinRice.MSThesisofHuazhongAgriculturalUniversity,Wuhan,China,2012(inChinesewithEnglishabstract)
[42]HickmanR,HillC,PenfoldCA,BreezeE,BowdenL,MooreJD,ZhangP,JacksonA,CookeE,Bewicke-CopleyF,MeadA,BeynonJ,WildDL,DenbyKJ,OttS,Buchanan-WollastonV.AlocalregulatorynetworkaroundthreeNACtranscriptionfactorsinstressresponsesandsenescenceinArabidopsisleaves.PlantJ,2013,75:26–39
[43]BhattramakkiD,DolanM,HanafeyM,WinelandR,VaskeD,RegisterJC3rd,TingeySV,RafalskiA.Insertiondeletionpolymorphismsin3'regionsofmaizegenesoccurfrequentlyandcanbeusedashighlyinformativegeneticmarkers.PlantMolBiol,2002,48:539–547
[44]YangD,YangX,LiuJ,WangBH,LiuBL,WangYZ.PodshatteringresistanceassociatedwithdomesticationismediatedbyaNACgeneinsoybean.NatCommun,2014,5:3352

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!