欢迎访问作物学报,今天是

作物学报 ›› 2017, Vol. 43 ›› Issue (12): 1784-1790.doi: 10.3724/SP.J.1006.2017.01784

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于陆地棉背景的海岛棉染色体片段导入系产量性状QTL定位

朱协飞**,王鹏**,司占峰,张天真*   

  1. 南京农业大学棉花研究所 / 作物遗传与种质创新国家重点实验室,江苏南京 210095
  • 收稿日期:2016-12-31 修回日期:2017-09-10 出版日期:2017-12-12 网络出版日期:2017-09-28
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-18-01)和国家重点研发计划项目(2016YFD0101400)专项经费资助。

QTL Mapping for Yield Components in Gossypium barbadense Chromosome Segment Introgression Lines Based on Gossypium hirsutum Background

ZHU Xie-Fei**, WANG Peng**, SI Zhan-Feng,ZHANG Tian-Zhen*   

  1. Cotton Institute, Nanjing Agricultural University / State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095, China
  • Received:2016-12-31 Revised:2017-09-10 Published:2017-12-12 Published online:2017-09-28
  • Supported by:

    This study was supported by China Agriculture Research System (CARS-18-01) and the National Key R&D Program (2016YFD0101400).

摘要:

棉花产量分为籽棉产量和皮棉产量,其中高皮棉产量总是育种的首要目标。皮棉产量由单株铃数、衣分、单铃重等因素组成。其中衣分在各因素中的遗传率最高,同时也是产量育种中重要的选择指标。育种中利用分离群体对单株铃数、铃重等产量性状选择受环境影响较大。利用染色体片段导入系进行铃数、铃重等产量性状的定位,定向改良产量性状,是棉花分子设计育种的有效方法。本研究利用陆地棉TM-1为轮回亲本和海岛棉海7124为非轮回亲本构建了一套陆地棉背景的染色体片段导入系,并在7个环境的田间试验下,鉴定了它们的产量表现,定位了28个与单株铃数、铃重、衣分和籽指相关的QTL。其中,在Dt亚组染色体上鉴定出的产量性状QTL多于在At亚组染色体上鉴定出的。28个QTL中,加性效应为正的16个,加性效应为负的12个,表明海岛棉不同的导入片段效应不同,有的片段可以提高陆地棉产量,有的则降低陆地棉产量。在6个环境下,导入系IL008 (特征标记NAU2573和NAU3576)的衣分均显著高于轮回亲本TM-1,因此IL008可以应用于棉花分子育种,定向改良陆地棉的衣分。

关键词: 导入系, 产量, QTL定位, 加性效应

Abstract:

Cotton yield is divided into seed cotton yield and lint yield. High lint yield is always the primary breeding goal in cotton. Lint yield consists of three components, including boll number per plant, lint percentage and boll weight. Of them, lint percentage has the highest heritability and is a most important target in breeding for increasing lint yield. Selection of yield components such as boll number and boll weight is easily affected by environmental factors in temporary segregating populations. It is testified that it is one of efficient methods to map the yield component QTLs and develop the elite lines in molecular breeding by using chromosome segment introgression lines (CSILs). In the present study, we developed a set of CSILs using G. hirsutumacc TM-1 as a recurrent parent and G. barbadense cv. Hai 7124 as a non-recurrent parent through the molecular markers assisted-selection. Here, we identified 28 QTLs for yield components under seven environments. Much more QTLs were enriched on Dt subgenome than on At subgenome. The chromosome segments introgressed from G. barbadense have different effects on yields in G. hirsutum background. There were 16 QTLs showing positive additive effects, implying these chromosome segments introgressed from G. barbadense could be used to improve yield components, while 12 QTLs showing negative additive effects, decreasing yield components. Lint percentage in IL008 line anchored with the SSR markers NAU2573 and NAU3576 was significantly higher than that of the recurrent parent TM-1 under six environments. Therefore, the CSIL IL008 could be used in molecular breeding to improve the lint yield in G. hirsutum.

Key words: CSILs, Yield, QTL mapping, Additive Effect

[1]Jiang C X, Wright R J, El-Zik K, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA, 1998, 95: 4419–4424 [2]Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147–1162 [3]Doi K, Wata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of japonica rice (O. sativa L.). Rice Genet Newsl, 1997, 14: 39–41 [4]王立秋, 赵永锋, 薛亚东, 张祖新, 郑用琏, 陈景堂. 玉米衔接式单片段导入系群体的构建和评价. 作物学报, 2007, 33: 663–668 Wang L Q, Zhao Y F, Xue Y D, Zhang Z X, Zheng Y L, Chen J T. Development and evaluation of two link-up single segment introgression lines (SSILs) in Zea mays. Acta Agron Sin, 2007, 33: 663–668 (in Chinese with English abstract) [5]Liu G M, Li W T, Zeng R Z, Zhang, G Q. Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci, 2003, 17:201-204 [6]Von K M, Wang H, Léon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeumvul gare ssp. spontaneum) as donor. Theor Appl Genet , 2004, 109: 1736–1745 [7]Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39: 248–358 [8]Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang TZ. A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics, 2008, 9: 314–331 [9]Kohel R J, Lewis C F, Richmond T R. Texas marker-1: description of a genetic standard for Gossypium hirsutum L. Crop Sci, 1970, 10: 670–671 [10]潘家驹. 棉花育种学. 中国农业出版社, 1998 Pan J J. Cotton Breeding. China Agriculture Press, 1998 (in Chinese) [11]Yang C, Guo W Z, Li G Y, Gao F, Lin S S, Zhang T Z. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages for in G. barbadense L. Plant Sci, 2008, 174: 290–298 [12]Wang P, Ding Y Z, Lu Q X. Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Sci Bull, 53: 1512–1517 [13]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104 [14]Wang J K, Wan X Y, Li H H, Pfeiffer W H, Crouch J, Wan J M. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet, 2007, 115: 87–100 [15]McCouch S R, Cho Y G, Yano M, Paule E, Blinstrue M, Morishima H M, Kinosita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13 [16]Ren L H, Guo W Z, Zhang T Z. Identification of quantitative trait loci (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Bot Sin, 2002, 44, 7: 815–820 [17]Wu M Q, Zhang X L, Nie Y C, He D H. Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar. J Genet Genomics, 2003, 30: 443–452 [18]Rong J K, Alex Feltus F, Waghmare V N, Pierce G J, Chee P W, Draye X, Saranga Y, Wright R J, Wilkins T A, May O L, Smith C W, Gannaway J R, Wendel J F, Paterson A H. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics, 2007, 176: 2577–2588 [19]Paterson A H, Saranga Y, Menz M, Jiang C X, Wright R J. QTL analysis of genotype × environment interaction affecting cot ton fiber quality. Theor Appl Genet, 2003, 6: 384–396 [20]Wang P, Zhu Y J, Song X L, Cao Z B, Ding Y Z, Liu B L, Zhu X F, Wang S, Guo W Z, Zhang T Z. Genetic dissection of long staple fiber qualities in Gossypium barbadense using inter-specific chromosome segment introgression lines. Theor Appl Genet, 2012,124: 1415–1428 [21]Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’ . Breed Sci, 2005, 55: 65–73 [22]万建民. 作物分子设计育种. 作物学报, 2006, 32: 455–462 Wan J M. Perspectives of molecular design breeding in crops. Acta Agron Sin, 2006, 32: 455–462 [23]Xi Z Y, He F H, Zeng R Z, Zhang Z M, Ding X H, Li W T, Zhang G Q. Development of a wide population of chromosome single-segment substitution lines in the background of an elite cultivar of rice (Oryza sativa L.). Genome, 2006, 49: 476–484 [24]Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL Mapping of yield and yield components for elite hybrid derived-RILs in Upland cotton. J Genet Genomics, 2007, 34: 35–45 [25]Cao Z B, Wang P, Zhu X F, Chen H, Zhang T Z. SSR marker assisted improvement of fiber qualities in Gossypium hirsutum using G. barbadense introgression lines. Theor Appl Genet, 2014, 127: 587–594

[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!