欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (03): 332-342.doi: 10.3724/SP.J.1006.2018.00332

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻类病斑突变体spl34的鉴定与基因精细定位

刘宝玉(), 刘军化, 杜丹, 闫萌, 郑丽媛, 吴雪, 桑贤春, 张长伟*()   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室, 重庆400716
  • 收稿日期:2017-05-22 接受日期:2017-11-21 出版日期:2018-03-12 网络出版日期:2017-12-04
  • 通讯作者: 张长伟
  • 作者简介:

    673325435@qq.com

  • 基金资助:
    本研究由国家转基因生物新品种培育重大专项(2016ZX08001002-002)资助

Identification and Gene Mapping of a Lesion Mimic Mutant spl34 in Rice (Oryza sativa L.)

Bao-Yu LIU(), Jun-Hua LIU, Dan DU, Meng YAN, Li-Yuan ZHENG, Xue WU, Xian-Chun SANG, Chang-Wei ZHANG*()   

  1. Rice Research Institute of Southwest University / Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crop, Chongqing 400716, China
  • Received:2017-05-22 Accepted:2017-11-21 Published:2018-03-12 Published online:2017-12-04
  • Contact: Chang-Wei ZHANG
  • Supported by:
    This study was supported by the National Major Project for Developing New GM Crops (2016ZX08001002-002).

摘要:

利用化学诱变剂EMS处理籼型水稻恢复系“缙恢10号”, 从其后代中筛选到1个遗传稳定的类病斑突变体spl34。该突变体于分蘖后期在下部叶片的叶鞘上开始出现褐色的类病斑, 随后沿着中脉扩散至整个叶片, 成熟期扩散至整个植株。相比于野生型, 该突变体的株高显著变矮, 穗长显著变短, 穗粒数、结实率和千粒重极显著降低。遮光试验和组织化学分析表明, 突变体类病斑的形成受光诱导, 在类病斑形成部位发生大量过氧化氢沉积和细胞程序性死亡。荧光显微镜观察发现, 在紫外光照射下突变体产生的荧光较野生型弱。与野生型相比, 突变体spl34的H2O2和O2-含量较高, 而CAT、POD和T-SOD等保护酶的活性显著降低; 稻瘟病抗性无明显差异或略显降低。遗传分析表明, 突变体spl34的表型受1对隐性核基因控制。基因定位结果表明, 该基因定位于第4染色体的LR49和LR52两个分子标记之间, 物理距离为200 kb。测序分析发现该区间内的候选基因LOC_Os04g56480的第3449位碱基发生突变(G3449T), 导致色氨酸替换为半胱氨酸。qRT-PCR结果表明该基因在突变体内表达量降低, 而部分病程相关基因的表达量则升高。

关键词: 水稻, 类病斑突变体, spl34, 基因, 精细定位

Abstract:

A mutant spotted leaf 34 (spl34) was screened from the progeny of indica restorer line Jinhui 10 treated with ethyl methane sulfonate (EMS). Brown lesions in spl34 exhibit on the sheath of lower leaves at the late tillering stage, then spred from the midrib to entire leaf and finally throughout the whole plant at maturity stage. Compared with the wild type, the plant height, ear length, grain number per panicle, seed setting rate and thousand-grain weight as well as the activities of protective enzymes (CAT, POD, and T-SOD) were all significantly decreased while the content of reactive oxygen species (ROS) increased in spl34. The shading assay showed that the formation of lesions in spl34 was induced by light. Histochemical analysis showed that spl34 had excessive hydrogen peroxide (H2O2) deposition and programmed cell death in the position of lesions. In addition, the chlorophyll fluorescence was weaker in spl34 than in the wild type under the fluorescence microscopy. There was no significant difference in blast resistance between spl34 and the wild type. Genetic analysis suggested that the phenotype of spl34 was controlled by a single recessive nuclear gene, which was mapped between InDel markers LR49 and LR52 on chromosome 4 with an interval of 200 kb. Sequencing analysis revealed that a single base substitution (G to T) occurred at 3449 bp in the DNA sequence of LOC_Os04g56480, resulting in an amino acid change from tryptophane to cysteine. The qRT-PCR results showed that the transcriptional level of LOC_Os04g56480 was down-regulated in spl34, while that of some pathogenesis-related genes was highly up-regulated when compared with the wild type.

Key words: rice, lesion mimic mutant, spl34, gene, fine mapping

图1

分蘖期、成熟期野生型(WT)和突变体spl34的表型 A: 分蘖期野生型(WT)和突变体spl34植株; B: 成熟期野生型(WT)和突变体spl34植株; C: 成熟期野生型(WT)和突变体spl34的叶片。"

表1

野生型(WT)和spl34的主要农艺性状"

材料
Material
株高
Plant height
(cm)
有效穗数
Effective panicle
穗长
Panicle length (cm)
每穗粒数
Grain number per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
WT 107.12±3.35 8.60±1.20 25.26±1.40 180.90±12.48 78.41±4.45 25.57±0.81
Spl34 100.32±3.59* 8.80±0.82 22.34±1.22* 135.42±8.66** 53.65±3.96** 22.68±0.30**

图2

遮光对野生型和突变体spl34叶片的影响 A: 野生型遮光处理后; B: 野生型遮光处理后复光1周; C: 突变体spl34遮光后; D: 突变体spl34遮光处理后复光1周后。"

图3

野生型(WT)和突变体spl34抽穗期光合色素含量*在0.05水平上差异显著; **在0.01水平上差异显著。A~C: 抽穗期野生型(WT)和突变体spl34的倒一叶(A)、倒二叶(B)和倒三叶(C)光合色素含量。"

图4

野生型和突变体spl34叶片的自发荧光 A, B: 野生型在自然光和紫外光下叶片横切显微结构; C, D: 突变体spl34在自然光和紫外光下叶片横切显微结构; 标尺: 100 μm。白色箭头所指部位为类病斑形成部位, 黄色箭头所指部位为未形成类病斑部位。"

图5

野生型(WT)和突变体spl34的组织化学分析 A, B: 野生型(WT)和突变体spl34叶片的台盼蓝染色; C, D: 野生型(WT)和突变体spl34叶片的DAB染色。"

图6

抽穗期野生型(WT)和突变体spl34的生理指标*在0.05水平上差异显著; **在0.01水平上差异显著。"

表2

野生型(WT)与突变体spl34对稻瘟病菌的抗谱"

材料
Material
对稻瘟病各生理群的抗病频率
Resistance frequency to each physiological group
总群抗病频率
Resistance frequency to total
population
ZA ZB ZC ZD ZE ZG
WT 39.39±5.25 74.75±1.76 0 100 100 100 70.37±1.85
spl34 45.45±5.45 72.04±4.10 0 100 100 100 70.37±3.20

表3

野生型(WT)与突变体spl34的稻瘟病病情指标"

材料
Material
苗瘟病情指数
Disease indexes of leaf blast
at seedling stage
叶瘟病情指数
Disease indexes of leaf blast
at tillering stage
穗颈瘟发病率
Disease incidence of neck blast
WT 32.00±2.23 71.43±3.31 3.94±0.61
spl34 36.56±2.01 77.14±2.22 4.19±0.52

表4

新开发的InDel标记"

标记
Marker
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
LR7 TTCCTACACGGTCGAAGATCAT TCAAGTACCGGATTGAGTTTGAG
LR14 GAGATTATCCTGCGGTCTTAATC TTGATGATACGATGACCAAGTTC
LR25 ATATTCACATGCGCCGTTTG CTCCAACAGATCCATCTCAACC
LR31 GATCCAATGCGATGCTACTCC GCGATTAACTGGAGACATCACG
LR33 TTCAATGTGCTGCATTTAGAAAT AAAGATGGTTCAAGTCTTGAGGA
LR49 GCCAAACAGATTGGTTAGCG TTAGCGTAGCTGGCATAACATC
LR52 TTGATCTCGACTTCGATCACTAG GATGTCTGGACGTACACACACG

图7

突变体spl34的基因定位"

图8

目的基因spl34相对表达量分析"

图9

病程相关基因和稻瘟病抗性基因的表达分析病程相关基因为PAL、PR1a、PR1b、POX22.3、PR5、NPR1和POC1; 稻瘟病抗性基因为Pi-d3、Pish、Pi9、Pit、Pi5和Pia。"

[1] Hu G, Richter T E, Hulbert S H, Pryor T.Disease lesion mimicry caused by mutations in the rust resistance generp1. Plant Cell, 1996, 8: 1367-1376
[2] 黄奇娜, 杨杨, 施勇烽, 陈洁, 吴建利. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24: 108-115
Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L.Recent advances in research on spotted-leaf mutants of rice (Oryza sativa). Chin J Rice Sci, 2010, 24: 108-115 (in Chinese with English abstract)
[3] Lorrain S, Vailleau F, Balagué C, Roby D.Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants. Trends Plant Sci, 2003, 8: 263-271
[4] 孙惠敏, 张春娇, 李保同, 潘晓华. 水稻类病斑突变体的研究进展. 上海农业学报, 2014, 30(03): 142-147
Sun H M, Zhang C J, Li B T, Pan X H.Advances of study on rice lesion mimic mutants.Acta Agric Shanghai, 2014, 30(03): 142-147 (in Chinese with English abstract)
[5] Walbot V, Hoisington D A, Neuffer M G.Disease lesion mimic mutations. In: Kosuge T, Meredith C, eds. Genetic Engineering of Plants. Plenum, New York, 1983. pp 431-442
[6] Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L.A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685-694
[7] Shi L Y, Lv X L, Weng J F, Zhu H Y, Liu C L, Hao Z F, Zhou Y, Zhang D G, Li M S, Ci X K, Li X H, Zhang S H.Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.). Acta Agron Sin, 2014, 2: 132-143
[8] Spassieva S, Hille J.A lesion mimic phenotype in tomato obtained by isolating and silencing an Lls1, homologue. Plant Sci, 2002, 162: 543-549
[9] Xiao G Q, Zhang H W, Lu X Y, Huang R F.Characterization and mapping of a novel light-dependent lesion mimic mutant lmm6 in rice(Oryza sativa L.).J Integr Agric, 2015, 14: 1687-1696
[10] 潘璐琪, 陆雯, 李小白, 吴殿星, 王雪艳. 籼稻93-11类病斑突变体的特征研究. 核农学报, 2015, 29: 413-420
Pan L Q, Lu W, Li X B, Wu D X, Wang X Y.Characteristics of lesion mimic mutants from indica rice 93-11. J Nucl Agric Sci, 2015, 29: 413-420 (in Chinese with English abstract)
[11] Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L.Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant-Microbe Interact, 2000, 13: 869-876
[12] Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J.SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939-949
[13] Zeng L R, Qu S H, Bordeos A, Yang C W, Baraoidan M, Yan H Y, Xie Q, Nahm B H, Leung H, Wang G L.Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795-2808
[14] Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S.Isolation and molecular characterization of aSpotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847-860
[15] Qiao Y, Jiang W, Lee J H, Park B S, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J.SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice(Oryza sativa). New Phytol, 2010, 185: 258-274
[16] Wang L J, Pei Z Y, Tian Y C, He C Z.OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation.Mol Plant-Microbe Interact, 2005, 18: 375-384
[17] 陈红霖, 向阳海, 赵纪莹, 尹德东, 梁国华, 翟文学, 江光怀. 水稻类病变突变体c5的遗传分析与目标基因的精细定位. 作物学报, 2013, 39: 1148-1154
Chen H L, Xiang Y H, Zhao J Y, Yin D D, Liang G H, Zhai W X, Jiang G H.Genetic analysis and gene fine mapping of rice lesion mimic mutant c5. Acta Agron Sin, 2013, 39: 1148-1154 (in Chinese with English abstract)
[18] 钟振泉, 罗文龙, 刘永柱, 王慧, 陈志强, 郭涛. 一份新的水稻斑点叶突变体spl32的鉴定和基因定位. 作物学报, 2015, 41: 861-871
Zhong Z Q, Luo W L, Liu Y Z, Wang H, Chen Z Q, Guo T.Characterization of a novel spotted leaf mutantspl32 and mapping of Spl32(t) gene in rice(Oryza sativa). Acta Agron Sin, 2015, 41: 861-871 (in Chinese with English abstract)
[19] Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K.A rice spotted leaf gene,Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530-7535
[20] Jiao B B, Wang J J, Zhu X D, Zeng L Z, Li Q, He Z H.A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.Mol Plant, 2012, 5: 205-217
[21] Tong X H, Qi J F, Zhu X D, Mao B Z, Zeng L J, Wang B H, Li Q, Zhou G X, Xu X J, Lou Y G, He Z H.The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway.Plant J, 2012, 71: 763-775
[22] Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R.Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice(Oryza sativa L.). Genes Genet Syst, 2012, 87: 169-179
[23] Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S.Rice OsACDR1 (Oryza sativa, accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009, 28: 431-439
[24] Lin A H, Wang Y Q, Tang J Y, Xue P, Li C L, Liu L C, Hu B, Yang F Q, Loake G J, Chu C C.Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice.Plant Physiol, 2012, 158: 451-464
[25] Sun C H, Liu L C, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C.RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29-37
[26] Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto S, Hirochika H.Rice Pti1a negatively regulatesRAR1-dependent defense responses. Plant Cell, 2007, 19: 2940-2951
[27] Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undanet J R, Undan J, Terauchi R.The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2015, 290: 611-622
[28] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.Plant J, 2013, 74: 122-133
[29] Tang J Y, Zhu X D, Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C.Semi-dominant mutations in the CC-NB-LRR-type R, gene,NLS1, lead to constitutive activation of defense responses in rice. Plant J, 2011, 66: 996-1007
[30] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L T, Wong H L, Kawasaki T, Shimamoto K.Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice.J Biol Chem, 2010, 285: 11308-11313
[31] Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C.Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005, 18: 511-520
[32] Zhao J Y, Liu P C, Li C R, Wang Y Y, Guo L Q, Jiang G H, Zhai W X.LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice. J Genet Genomics, 2017, 44: 107-118
[33] Wang S, Lei C L, Wang J L, Ma J, Tang S, Wang C L, Zhao K J, Tian P, Zhang H, Qi C Y, Cheng Z J, Zhang X, Guo X P, Liu L L, Wu C Y, Wan J M.SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. J Exp Bot, 2017, 68: 899-913
[34] Lichtenthaler H K.Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 350-382
[35] Bowling S A, Clarke J D, Liu Y D, Klessig D F, Dong X N.The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 1997, 9: 1573-1584
[36] Thordal-Christensen H, Zhang Z G, Wei Y D, Collinge D B.Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction.Plant J, 1997, 11: 1187-1194
[37] 黄富, 程开禄, 彭国亮, 罗庆明, 陈国华, 朱永昌. 四川省水稻品种抗稻瘟病性规范化鉴定评价体系. 中国农业大学学报, 1998, 3(增刊-1): 23-26
Huang F, Cheng K L, Peng G L, Luo Q M, Chen G H, Zhu Y C.The standard evaluating system of rice resistance to blast in Sichuan province.J China Agric Univ, 1998, 3(suppl-1): 23-26 (in Chinese with English abstract)
[38] 张长伟, 凌英华, 桑贤春, 李平, 赵芳明, 杨正林, 李云峰, 方立魁, 何光华. 转苦瓜几丁质酶基因McCHIT1水稻及其稻瘟病抗性. 作物学报, 2011, 37: 1991-2000
Zhang C W, Ling Y H, Sang X C, Li P, Zhao F M, Yang Z L, Li Y F, Fang L K, He G H.Transgenic rice lines harboring McCHIT1 gene from Balsam Pear(Momordica charantia L.) and their blast resistance. Acta Agron Sin, 2011, 37: 1991-2000 (in Chinese with English abstract)
[39] 全国稻瘟病菌生理小种联合试验组. 我国稻瘟病菌生理小种研究. 植物病理学报, 1980, 10: 71-82
All China Coorporation of Research on Physiological Races of Pyricularia oryzae. Research on physiological races of rice blast fungus in China. Acta Phytopathol Sin, 1980, 10: 71-82 (in Chinese with English abstract)
[40] International Rice Research Institute. Standard Evaluation System for Rice (SES). Los Baños,Philippines: IRRI, 2002. pp 14-18
[41] Rogers S O, Bendich A J.Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues.Plant Mol Biol, 1985, 5: 69-76
[42] Feng B H, Yang Y, Shi Y F, Shen H C, Wang H M, Huang Q N, Xu X, Lu X G, Wu J L.Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Plant Biol, 2013, 55: 473-483
[43] Noutoshi Y, Ito T, Seki M, Nakashita H, Yoshida S, Marco Y, Shirasu K, Shinozaki K.A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death.Plant J, 2005, 43: 873-888
[44] Arase S, Zhao C M, Akimitsu K, Yamamoto M, Ichii M.A recessive lesion mimic mutant of rice with elevated resistance to fungal pathogens.J Gen Plant Pathol, 2000, 66: 109-116
[45] 邱结华, 马宁, 蒋汉伟, 圣忠华, 邵高能, 唐绍清, 魏祥进, 胡培松. 水稻类病斑突变体lmm4的鉴定及其基因定位. 中国水稻科学, 2014, 28: 367-376
Qiu J H, Ma N, Jiang H W, Sheng Z H, Shao G N, Tang S Q, Wei X J, Hu P S.Identification and gene mapping of a lesion mimic mutantlmm4 in rice. Chin J Rice Sci, 2014, 28: 367-376 (in Chinese with English abstract)
[46] Liu G, Wang L, Zhou Z, Leung H, Wang G L, He C.Physical mapping of a rice lesion mimic gene,Spl1, to a 70-kb segment of rice chromosome 12. Mol Gen Genomics, 2004, 272: 108-115
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[7] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[8] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[9] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[10] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[11] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[12] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[13] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[14] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[15] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!