作物学报 ›› 2018, Vol. 44 ›› Issue (05): 629-641.doi: 10.3724/SP.J.1006.2018.00629
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
魏大勇1,2,3(), 崔艺馨3, 熊清4, 汤青林1,2, 梅家琴3, 李加纳3, 钱伟3,*()
Da-Yong WEI1,2,3(), Yi-Xin CUI3, Qing XIONG4, Qing-Lin TANG1,2, Jia-Qin MEI3, Jia-Na LI3, Wei QIAN3,*()
摘要:
油菜籽饼粕是畜禽养殖中重要的蛋白原料, 但饼粕中的硫苷是一种抗营养物质, 食用过多会对禽畜产生毒害, 因此挖掘油菜籽粒硫苷含量的候选基因对油菜种子低硫苷育种具有重要现实意义。本研究连续4年种植1个含157份材料的油菜自然群体, 结合重测序数据对种子硫苷含量进行全基因组关联分析(GWAS), 并对15份低硫苷和15份高硫苷材料进行种子发育早期的转录组测序, 通过权重基因共表达网络分析(WGCNA)鉴定种子硫苷含量的候选基因。用GWAS共检测到45个与种子硫苷含量显著相关的SNP, 单个位点解释的表型变异为13.5%~23.3%, 主要分布在A09、C02和C09染色体的3个区间中, 覆盖5个已知的硫苷代谢基因。用WGCNA分析发现高、低硫苷材料之间的2275个差异表达基因, 可分为12个基因模块, 其中1个模块的基因显著富集在已知的硫苷生物合成途径, 对该模块内163个基因的权重分析得到13个候选基因。经检测, GWAS和WGCNA共得到的18个候选基因中, 有14个候选基因的表达量与种子硫苷含量显著相关(r = 0.376~0.638, P<0.05)。用两种方法鉴定到1个共同的候选基因BnaC02g41790D (基因名MAM1), 与该基因连锁的5个SNP构成5种单体型, 等位基因效应分析发现, 自然群体中63%的材料(99/157)为Hap 5, 平均硫苷含量为50.79 μmol g-1, 与另外4种单体型(95.04~110.28 μmol g-1)存在极显著差异(P<0.01)。本研究结合GWAS和WGCNA两种方法鉴定了油菜种子硫苷含量的候选基因, 可为复杂性状候选基因的筛选提供参考。
[1] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014, 345: 950-953 |
[2] | Nagaharu U.Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar bode of fertilization. Jpn J Bot, 1935, 7: 389-452 |
[3] | 刘后利. 油菜遗传育种学. 北京: 中国农业大学出版社, 2000. pp 146-154 |
Liu H L.Genetics and Breeding in Rrapeseed. Beijing: Chinese Agricultural Universitatis Press, 2000. pp 146-154 (in Chinese) | |
[4] |
Mithen R.Glucosinolates-biochemistry, genetics and biological activity.Plant Growth Regul, 2001, 34: 91-103
doi: 10.1023/A:1013330819778 |
[5] |
Fahey J W, Zalcmann A T, Talalay P.The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.Phytochemistry, 2001, 56: 5-51
doi: 10.1016/S0031-9422(00)00316-2 |
[6] |
Halkier B A, Gershenzon J.Biology and biochemistry of glucosinolates.Annu Rev Plant Biol, 2006, 57: 303-333
doi: 10.1146/annurev.arplant.57.032905.105228 pmid: 16669764 |
[7] |
Bak S, Feyereisen R.The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis.Plant Physiol, 2001, 127: 108-118
doi: 10.1104/pp.127.1.108 pmid: 11553739 |
[8] |
Grubb C D, Abel S.Glucosinolate metabolism and its control.Trends Plant Sci, 2006, 11: 89-100
doi: 10.1016/j.tplants.2005.12.006 pmid: 16406306 |
[9] |
Mikkelsen M D, Naur P, Halkier B A.Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J, 2004, 37: 770-777
doi: 10.1111/j.1365-313X.2004.02002.x pmid: 14871316 |
[10] |
Wittstock U, Halkier B A.Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem, 2000, 275: 14659-14666
doi: 10.1074/jbc.275.19.14659 pmid: 10799553 |
[11] | Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z.The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035-1039 |
[12] | Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A P, Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T J, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S K, Yang L M, Min J M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J N, Jiang L C, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T H, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z S, Liu X Q, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 5: 3930 |
[13] |
Fu Y, Lu K, Qian L W, Mei J Q, Wei D Y, Peng X H, Xu X F, Li J N, Frauen M, Dreyer F, Snowdon R J, Qian W.Development of genic cleavage markers in association with seed glucosinolate content in canola.Theor Appl Genet, 2015, 128: 1029-1037
doi: 10.1007/s00122-015-2487-z pmid: 25748114 |
[14] | Howell P M, Sharpe A G, Lydiate D J.Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003, 46: 454-460 |
[15] |
Zhao J, Meng J.Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed, 2003, 122: 19-23
doi: 10.1046/j.1439-0523.2003.00784.x |
[16] |
Li F, Chen B Y, Xu K, Wu J F, Song W L, Bancroft I, Harper A L, Trick M, Liu S Y, Gao G Z, Wang N, Yan G X, Qiao J W, Li J, Li H, Xiao X, Zhang T Y, Wu X M.Genome-wide association sudy dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res, 2014, 21: 355-367
doi: 10.1093/dnares/dsu002 pmid: 24510440 |
[17] | Qu C M, Li S M, Duan X J, Fan J H, Jia L D, Zhao H Y, Lu K, Li J N, Xu X F, Wang R.Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L. Genes, 2015, 6: 1215-1229 |
[18] |
Harper A L, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I.Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol, 2012, 30: 798-802
doi: 10.1038/nbt.2302 pmid: 20 |
[19] | Lu G, Harper A L, Trick M, Morgan C, Fraser F, O'Neill C, Bancroft I. Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus. DNA Res, 2014, 21: 613-625 |
[20] |
Langfelder P, Horvath S.WGCNA: an R package for weighted correlation network analysis.BMC Bioinformatics, 2008, 9: 559
doi: 10.1186/1471-2105-9-559 |
[21] |
宋长新, 雷萍, 王婷. 基于WGCNA算法的基因共表达网络构建理论及其R软件实现. 基因组学与应用生物学, 2013, 32: 135-141
doi: 10.3969/gab.032.000135 |
Song C X, Lei P, Wang T.Gene co-expression network analysis ased onWGCNA algorithm-theory and implementation in R Software.Genom Appl Biol, 2013, 32: 135-141 (in Chinese with English abstract)
doi: 10.3969/gab.032.000135 |
|
[22] |
Farber C R.Systems-level analysis of genome-wide association data.G3-Genes Genom Genet, 2013, 3: 119-129
doi: 10.1534/g3.112.004788 pmid: 23316444 |
[23] | SAS V9.13 software.SAS Institute, Cary, NC, USA, 2005 |
[24] |
Li H, Durbin R.Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics, 2009, 25: 1754-1760
doi: 10.1093/bioinformatics/btp324 |
[25] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data.Genome Res, 2010, 20: 1297-1303
doi: 10.1101/gr.107524.110 |
[26] |
Aulchenko Y S, Ripke S, Isaacs A, Van Duijn C M. GenABEL: an R library for genome-wide association analysis.Bioinformatics, 2007, 23: 1294-1296
doi: 10.1093/bioinformatics/btm108 pmid: 17384015 |
[27] |
Merk H L, Yarnes S C, Van Deynze A.Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm.J Am Soc Hort Sci, 2012, 137: 427-437
doi: 10.1002/aur.1564 |
[28] |
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L.Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.Nat Protoc, 2012, 7: 562-578
doi: 10.1038/nprot.2012.016 |
[29] |
Li Q, Yang X H, Xu S T, Cai Y, Zhang D L, Han Y J, Li L, Zhang Z X, Gao S B, Li J S, Yan J B.Genome-wide association studies identified three independent polymorphisms associated with alpha-tocopherol content in maize kernels.PLoS One, 2012, 7: e36807
doi: 10.1371/journal.pone.0036807 pmid: 3352922 |
[30] |
Kroymann J, Textor S, Tokuhisa J G, Falk K L, Bartram S, Gershenzon J, Mitchell-Olds T.A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway.Plant Physiol, 2001, 127: 1077-1088
doi: 10.1104/pp.010416 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[3] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[4] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[5] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[6] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[7] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[8] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[9] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[10] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[11] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[12] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[13] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[14] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[15] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
|