欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (7): 1086-1094.doi: 10.3724/SP.J.1006.2018.01086

• 研究简报 • 上一篇    下一篇

马铃薯冠气温差变化特性与耐旱性的关系

余斌1,杨宏羽1,王丽2,刘玉汇1,白江平1,张峰1,王蒂1,张俊莲1,*()   

  1. 1 甘肃农业大学农学院 / 甘肃省遗传改良与种质创新重点实验室 / 甘肃省干旱生境作物学国家重点实验室培育基地, 甘肃兰州 730070
    2 甘肃农业大学生命科学技术学院, 甘肃兰州 730070
  • 收稿日期:2018-01-10 接受日期:2018-03-26 出版日期:2018-07-10 网络出版日期:2018-04-28
  • 通讯作者: 张俊莲
  • 基金资助:
    本研究由国家国际科技合作与交流专项(2014DFG31570), 国家现代农业产业技术体系建设专项(CARS-09-P14), 甘肃农业大学甘肃省干旱生境作物学重点实验室开放基金项目(GSCS-2016-09)和甘肃省高等学校科研项目(2015A-068, GSKYYWF2014-1)资助

Relationship between Potato Canopy-air Temperature Difference and Drought Tolerance

Bin YU1,Hong-Yu YANG1,Li WANG2,Yu-Hui LIU1,Jiang-Ping BAI1,Feng ZHANG1,Di WANG1,Jun-Lian ZHANG1,*()   

  1. 1 College of Agronomy, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China;
    2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2018-01-10 Accepted:2018-03-26 Published:2018-07-10 Published online:2018-04-28
  • Contact: Jun-Lian ZHANG
  • Supported by:
    This study was supported by the International Science & Technology Cooperation Program of China (2014DFG31570), the China Agriculture Research System (CARS-09-P14), the Research Program Sponsored by Gansu Provincial Key Laboratory of Arid land Crop Science, Gansu Agricultural University (GSCS-2016-09), and Gansu Scientific Research Foundation for the Higher Education Institutions (2015A-068, GSKYYWF2014-1).

摘要:

冠气温差能够反映植物在干旱胁迫下的生理适应性。本研究以耐旱型马铃薯品种冀张薯8号和陇薯10号; 干旱敏感型品种大西洋和夏波蒂, 以及从秘鲁国际马铃薯中心引进的10份具有不同耐旱性的种质资源为材料, 在半干旱和半湿润2种环境下对其植株表型性状(株高、叶面积、叶鲜重、植被覆盖指数)、光合生理指标(光合速率、气孔导度、蒸腾速率、叶绿素)以及冠气温差进行测定和耐旱性评价。结果表明, 所测性状指标中, 冠气温差、蒸腾速率和气孔导度对干旱胁迫最敏感; 冠气温差在不同供试马铃薯材料之间及干湿两种环境之间均表现出极显著差异性; 冠气温差的耐旱系数与植株表型性状及光合生理指标的耐旱系数均呈极显著正相关; 利用红外热成像技术监测冠气温差, 是进行马铃薯耐旱性评价的有效手段, 可为马铃薯耐旱育种研究提供理论依据。

关键词: 马铃薯, 冠气温差, 光合生理特性, 耐旱性

Abstract:

The canopy-air temperature difference can reflect the physiological adaptability of plants under drought stress. In this study, drought tolerant varieties Jizhangshu 8 and Longshu 10, drought sensitive varieties Atlantic and Shepody, and ten potato clones with different drought tolerance levels from Peru International Potato Center were used to measure plant phenotypic traits (plant height, leaf area, leaf fresh weight, normalized difference vegetation index), photosynthetic indexes (photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll content) and the canopy-air temperature difference, and evaluated the drought tolerance under semi-arid and semi-humid environments. The canopy-air temperature difference, transpiration rate and stomatal conductance were most sensitive to drought stress. The canopy-air temperature difference was significantly different among different potato varieties (clones) under semi-arid and semi-humid environments. The drought tolerance coefficient of canopy-air temperature difference showed significantly positive correlations with drought tolerance coefficients of plant phenotypic characters and photosynthetic indexes. The canopy-air temperature difference is an effective indicator to evaluate potato drought tolerance by using infrared thermometers, which could provide a theoretical basis for the research of potato drought tolerance breeding.

Key words: potato, canopy-air temperature difference, photosynthetic physiology characteristics, drought tolerance coefficient

表1

试验品种和CIP马铃薯资源编号"

类型 Type 品种和CIP编号 Varieties and CIP entry
干旱敏感型
Drought sensitive
大西洋(Atlantic), 夏波蒂(Shepody), CIP1 (CIP 300054.29), CIP2 (CIP 391065.69), CIP3 (CIP 394613.139), CIP4 (CIP 393085.5), CIP5 (CIP 393073.179)
耐旱型
Drought tolerant
冀张薯8号(Jizhangshu 8), 陇薯10号(Longshu 10), CIP6 (CIP 397044.25), CIP7 (CIP 388615.22), CIP8 (CIP 392797.22), CIP9 (CIP 397067.2), CIP10 (CIP 391207.2)

图1

试验区月平均降雨量和气温状况"

Table 2

Drought tolerant coefflcient of agricultrual characteristics in different environments"

图2

远红外热成像仪拍摄的热成像图图a和图b分别是半湿润环境和半干旱环境下耐旱品种陇薯10号的远红外热成像图, 图c和图d分别是半湿润环境和半干旱环境下干旱敏感型品种夏波蒂的远红外热成像图。色板中不同颜色代表不同温度。"

Table3

Drought tolerant index and coefficlent of photosynthetic traits in different environment"

Table4

Analysis of genotype and environment interaction for traits related to drought tolerance"

表5

各性状耐旱系数间的相关系数"

性状
Trait
样本数
Number
株高
Plant height
叶面积
Leaf area
叶鲜重
Leaf fresh weight
叶绿素
Chlorophyll content
植被覆
盖指数
NDVI
光合
速率
Pn
气孔
导度
Gs
蒸腾
速率
Tr
叶面积 Leaf area 84 0.399**
叶鲜重 Leaf fresh weight 84 0.371** 0.688**
叶绿素 Chlorophyll content 84 0.579** 0.263* 0.412**
植被覆盖指数 NDVI 84 0.455** 0.429** 0.553* 0.487**
光合速率 Pn 84 0.190 0.311** 0.274* -0.006 0.339**
气孔导度 Gs 84 0.143 0.338** 0.191 0.235* 0.317** -0.084
蒸腾速率 Tr 84 0.073 0.283** 0.270* 0.117 0.476** 0.174 0.657**
冠气温差Canopy-air temperature difference 84 0.324** 0.522** 0.614** 0.281** 0.427** 0.411** 0.263* 0.345**
[1] Mullins E, Milbourne D, Petti C, Doyle-Prestwich B M, Meade C . Potato in the age of biotechnology. Trends Plant Sci, 2006,11:254-260
doi: 10.1016/j.tplants.2006.03.002 pmid: 16621672
[2] 徐建飞, 金黎平 . 马铃薯遗传育种研究: 现状与展望. 中国农业科学, 2017,50:990-1015
Xu J F, Jin L P . Advances and perspectives in research of potato genetics and breeding. Sci Agric Sin, 2017,50:990-1015 (in Chinese with English abstract)
[3] 肖国举, 仇正跻, 张峰举, 马飞, 姚玉璧, 张强, 王润元 . 增温对西北半干旱区马铃薯产量和品质的影响. 生态学报, 2015,35:830-836
doi: 10.5846/stxb201304110671
Xiao G J, Qiu Z J, Zhang F J, Ma F, Yao Y B, Zhang Q, Wang R Y . Influence of increased temperature on the potato yield and quality in a semiarid district of Northwest China. Acta Ecol Sin, 2015,35:830-836 (in Chinese with English abstract)
doi: 10.5846/stxb201304110671
[4] Piao S L, Ciais P, Huang Y, Shen Z H, Peng S S, Li J S, Zhou L P, Ma Y C, Ding Y H, Pierre F, Liu C Z, Tan K, Yu Y Q, Zhang T Y . The impacts of climate change on water resources and agriculture in China. Nature, 2010,467:42-51
doi: 10.1038/nature09364 pmid: 20811450
[5] Lourtie E, Bonnet M, Bosschaert L. New glyphosate screening technique by infrared thermometry. In: Robyn E, eds. Fourth International Symposium on Adjuvants for Agrochemicals. Australia: New Zealand Forest Research Institute, 1995. pp 297-302
[6] Laury C, Dominique V D S . Imaging techniques in early detection of plant stress. Trends Plant Sci, 2000,5:495-501
doi: 10.1016/S1360-1385(00)01781-7 pmid: 11077259
[7] Amani I, Fischer R A, Reynolds M P . Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci, 2010,176:119-129
doi: 10.1111/j.1439-037X.1996.tb00454.x
[8] Fan T L, Balta M, Rudd J, Payne W A . Canopy temperature depression as a potential selection criterion for drought resistance in wheat. J Integr Agric, 2005,4:793-800
[9] Singh P, Kanemasu E T . Leaf and canopy temperatures of pearl millet genotypes under irrigated and nonirrigated conditions. Agron J, 1983,75:497-501
doi: 10.2134/agronj1983.00021962007500030019x
[10] Jefferies R A . Effects of drought on chlorophyll fluorescence in potato (Solanum tuberosum L.): II. Relations between plant growth and measurements of fluorescence. Potato Res, 1992,35:35-40
doi: 10.1007/BF02357720
[11] Basu P S, Sharma A, Sukumaran N P . Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica, 1998,35:13-19
doi: 10.1023/A:1006801311105
[12] 张永成, 田丰 . 马铃薯实验研究方法. 北京: 中国农业科学技术出版社, 2007. pp 117-123
Zhang Y C, Tian F. Potato Experimental Research Method. Beijing: China Agricultural Science and Technology Press, 2007. pp 117-123(in Chinese)
[13] Bouslama M, Schapaugh W T . Stress tolerance in soybeans: I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci, 1984,24:933-937
doi: 10.2135/cropsci1984.0011183X002400050026x
[14] 徐建飞, 刘杰, 卞春松, 段绍光, 庞万福, 金黎平 . 马铃薯资源抗旱性鉴定和筛选. 中国马铃薯, 2011,25:1-6
doi: 10.3969/j.issn.1672-3635.2011.01.001
Xu J F, Liu J, Bian C S, Duan S G, Pang W F, Jin L P . Evaluation of drought tolerance in potato germplasm. China Potato J, 2011,25:1-6(in Chinese with English abstract)
doi: 10.3969/j.issn.1672-3635.2011.01.001
[15] Deblonde P M K, Ledent J F . Effects of moderate drought conditions on green leaf number, stem height, leaf length and yield of potato cultivars. Eur J Agron, 2001,14:31-41
doi: 10.1016/S1161-0301(00)00081-2
[16] Lahlou O, Ouattar S, Ledent J F . The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, 2003,23:257-268
doi: 10.1051/agro:2002089
[17] Richards R A . Defining selection criteria to improve yield under drought. Plant Growth Regul, 1996,20:157-166
doi: 10.1007/BF00024012
[18] Bansal K C, Nagaragan S, Sukumaran N P . A rapid screening technique for drought resistance in potato (Solanum tuberosum L). Potato Res, 1991,34:241-248
[19] Jefferies R A, Mackerron D K L . Carbon isotope discrimination in irrigated and droughted potato. Plant Cell Environ, 1997,20:124-130
doi: 10.1046/j.1365-3040.1997.d01-5.x
[20] Jackson R D . Canopy temperature and crop water stress. Adv Irrig, 1982,1:43-85
doi: 10.1016/B978-0-12-024301-3.50009-5
[21] 刘学著 . 冬小麦冠气温差及其与叶水势的相关性实验研究. 作物学报, 1995,21:528-532
Liu X Z . Winter wheat canopy-air temperature difference and its relation to leaf water potential. Acta Agron Sin, 1995,21:528-532 (in Chinese with English abstract)
[22] Webber H, Martre P, Asseng S, Kimball B, White J . Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Res, 2015,202:21-35
doi: 10.1016/j.fcr.2015.10.009
[23] Jin M, Liu X, Zhang B . Evaluating heavy-metal stress levels in rice using a theoretical model of canopy-air temperature and leaf area index based on remote sensing. IEEE J STARS, 2017,10:3232-3242
doi: 10.1109/JSTARS.2017.2669204
[24] Saryoko A, Fukuda Y, Lubis I, Homma K, Shiraiwa T . Physiological activity and biomass production in crop canopy under a tropical environment in soybean cultivars with temperate and tropical origins. Field Crops Res, 2018,216:209-216
doi: 10.1016/j.fcr.2017.11.012
[25] Conaty W C, Mahan J R, Neilsen J E, Tan D K Y, Yeates S J, . The relationship between cotton canopy temperature and yield, fibre quality and water-use efficiency. Field Crops Res, 2015,183:329-341
doi: 10.1016/j.fcr.2015.08.010
[26] Han M, Zhang H, Dejonge K C, Comas L H, Trout T J . Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agric Water Manage, 2016,177:400-409
doi: 10.1016/j.agwat.2016.08.031
[27] Reynolds M P, Pfeiffer W H. Applying physiological strategies to improve yield potential. In: Royo C, Nachit M M, Di Fonzo N, Araus J L, eds. Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza: CIHEAM-IAMZ, 2000. pp 95-103
[28] Pinter P J, Zipoli G, Reginato R J, Jackson R D . Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric Water Manage, 1990,18:35-48
doi: 10.1016/0378-3774(90)90034-V
[29] Blum A, Shpiler L, Golan G, Mayer J . Yield stability and canopy temperature of wheat genotypes. Field Crops Res, 1989,22:289-296
doi: 10.1016/0378-4290(89)90028-2
[30] 冯佰利, 张宾, 高小丽, 高金峰, 王长发, 张嵩午 . 抗旱小麦的冷温特征及其生理特性分析. 作物学报, 2004,30:1215-1219
doi: 10.3321/j.issn:0496-3490.2004.12.007
Feng B L, Zhang B, Gao X L, Gao J F, Wang C F, Zhang S W . Analysis on lower canopy temperature and physiological characteristics of drought-resistant wheat. Acta Agron Sin, 2004,30:1215-1219 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.12.007
[1] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[2] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[5] 谭雪莲, 郭天文, 胡新元, 张平良, 曾骏, 刘晓伟. 黄土高原旱作区马铃薯连作根际土壤微生物群落变化特征[J]. 作物学报, 2022, 48(3): 682-694.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 李鹏程, 毕真真, 孙超, 秦天元, 梁文君, 王一好, 许德蓉, 刘玉汇, 张俊莲, 白江平. DNA甲基化参与调控马铃薯响应干旱胁迫的关键基因挖掘[J]. 作物学报, 2021, 47(4): 599-612.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[13] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[14] 柳燕兰, 郭贤仕, 张绪成, 马明生, 王宏康. 密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响[J]. 作物学报, 2021, 47(2): 320-331.
[15] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!