欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (11): 1638-1648.doi: 10.3724/SP.J.1006.2019.94003

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生硬脂酰-ACP酸脱饱和基因FAB2表达的分子机制

刘浩,鲁清,李海芬,李少雄,陈小平,梁炫强(),洪彦彬()   

  1. 广东省农业科学院作物研究所 / 广东省农作物遗传改良重点实验室, 广东广州 510640
  • 收稿日期:2019-01-02 接受日期:2019-05-12 出版日期:2019-11-12 网络出版日期:2019-05-30
  • 通讯作者: 梁炫强,洪彦彬
  • 作者简介:E-mail: liuhao2054@stu.scau.edu.cn
  • 基金资助:
    本研究由国家自然科学基金项目(31771841);本研究由国家自然科学基金项目(31801401);广东省自然科学基金项目(2017A030311007);国家重点研发计划项目(2018YFD0201009-02);广东省农业科学院优秀博士计划联合资助

Molecular mechanism of stearoyl-ACP desaturase gene FAB2 expression in peanut

LIU Hao,LU Qing,LI Hai-Fen,LI Shao-Xiong,CHEN Xiao-Ping,LIANG Xuan-Qiang(),HONG Yan-Bin()   

  1. Crops Research Institute, Guangdong Academy of Agricultural Science / Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou 510640, Guangdong, China
  • Received:2019-01-02 Accepted:2019-05-12 Published:2019-11-12 Published online:2019-05-30
  • Contact: Xuan-Qiang LIANG,Yan-Bin HONG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31771841);This study was supported by the National Natural Science Foundation of China(31801401);the Natural Science Foundation of Guangdong Province(2017A030311007);the National Key Research and Development Program(2018YFD0201009-02);Excellent PhD Program of Guangdong Academy of Agricultural Science

摘要:

FAB2位于油酸合成通路的上游, 编码硬脂酰-ACP脱饱和酶, 调控硬脂酸(C18:0)向油酸(C18:1)转化。本研究发现高油酸品种开农176种子发育前期FAB2的表达量升高, 而成熟期油酸过量积累会抑制FAB2的表达。利用开农176与开农70构建F2杂交群体, 发现当植株油酸含量超过60%时会从整体水平上抑制FAB2的表达。种子发育前期, 油酸不断积累会导致过氧化物酶活性升高, 并且活性氧含量随之增加; 但是在种子发育后期均降低, 该结果与FAB2的表达量变化趋势相同。亚细胞定位结果表明, FAB2FAD2分别定位于叶绿体与内质网。FAB2编码区序列多态性分析显示, 该蛋白序列氮端的氨基酸结构缺失可能会导致硬脂酸含量升高。FAB2启动子序列存在大量AT碱基的富集区域, 并且含有光响应、激素调控、转录因子结合的保守顺式元件。本研究发现过量积累的油酸会激活过氧化物酶介导的活性氧信号途径, 进而通过细胞核内的未知转录因子调节上游基因FAB2的表达量, 该结果不仅拓展了对FAB2的功能认知, 也为培育高油酸花生品种提供了相关的理论指导。

关键词: 花生, 高油酸, FAB2, ROS, 反馈调节

Abstract:

Stearoyl-ACP desaturase, encoded by FAB2, and located on the upstream of oleic acid biosynthesis pathway, modulates the conversion of stearic acid (C18:0) into oleic acid (C18:1). The expression of FAB2 was increased at the early stage of seed development in high-oleic variety Kainong 176, but over-accumulated oleic acid repressed the FAB2 expression at the period of seed maturation. An F2 hybrid population was constructed using Kainong 176 and Kainong 70, showing that the content of oleic acid up to 60% directly repressed the FAB2 expression on the whole. The activity of peroxidase (POD) and content of ROS were increased at the early stage of seed development with the oleic acid gradual accumulation, but decreased at the maturation stage. Subcellular localization analysis indicated that FAB2 and FAD2 were located on chloroplast and endoplasmic reticulum, respectively. Encoding sequence polymorphism analysis of FAB2 suggested that amino acid deficient at the N-terminal of FAB2 protein sequence probably induced the high content of stearic acid in peanut. Furthermore, the promotor sequence of FAB2 contained multiple AT-rich region, and possessed the light responsive, hormone regulation, and transcription factor binding site cis-regulating elements. Taken together, this study found that over-accumulated oleic acid activated the POD-induced ROS robust pathway, and then regulated the expression of FAB2 by unknown transcription factor in nucleus. The results extend the knowledge of FAB2 function, and provide a relevant theoretical guidance in future peanut breeding for high oleic acid.

Key words: peanut, high oleic acid, FAB2, ROS, feedback regulation

图1

花生油酸积累反馈调节FAB2的表达量 A: 油酸合成示意图; B: 开农176与开农70的植株照片; C: 种子发育的6个时期; D: FAB2在高、低油酸品种种子发育过程中的表达变化量; E: 开农176与开农70的油酸与亚油酸含量; F: 开农176与开农70种子发育阶段油酸与亚油酸含量变化。"

图2

花生FAB2表达受抑制的油酸积累值 A: F2群体单株的油酸与亚油酸含量。OA: oleic acid; LOA: linoleic acid。B: F2群体单株的FAB2表达量变化。F2-25位对照单株, 柱状图结果表明3次独立重复。"

图3

POD活性与H2O2含量变化 A: POD活性检测; B: H2O2含量检测; **代表P < 0.01, *代表P < 0.05。"

图4

FAB2与FAD2的亚细胞定位"

表1

种质资源农艺性状"

花生品种
Peanut variety
蛋白质含量
Protein content
(%)
脂肪含量
Fatty acid content
(%)
油酸
Oleic acid
(%)
亚油酸
Linoleic acid
(%)
硬脂酸
Stearic acid
(%)
植物学类型
Botanical classification
冀甜 Jitian 24.10 42.04 30.28 44.87 4.28 珍珠豆型 Spanish type
汕油523 Shanyou 523 25.46 51.98 26.48 46.90 3.47 珍珠豆型 Spanish type
贺油11 Heyou 11 25.11 50.47 29.90 44.69 3.09 珍珠豆型 Spanish type
粤油18 Yueyou 18 26.03 51.24 22.04 51.34 3.62 珍珠豆型 Spanish type
徐花13 Xuhua 13 25.89 52.02 39.61 37.76 3.73 珍珠豆型 Spanish type
湛油12号 Zhanyou 12 20.98 55.68 33.59 42.77 2.39 珍珠豆型 Spanish type
花育30 Huayu 30 24.05 52.51 36.04 40.89 3.78 珍珠豆型 Spanish type
粤北种 Yuebeizhong 44.95 26.27 31.76 46.50 2.98 珍珠豆型 Spanish type
ICGV87123 25.73 48.86 29.46 44.89 2.32 珍珠豆型 Spanish type
粤油35 Yueyou 35 21.87 49.91 39.66 39.08 0.88 珍珠豆型 Spanish type
小粒种 Xiaolizhong 24.12 53.45 40.54 37.16 0.92 珍珠豆型 Spanish type
G40423 30.13 50.03 36.64 41.70 2.09 珍珠豆型 Spanish type
湛油1号 Zhanyou 1 29.88 46.76 28.99 43.87 3.74 珍珠豆型 Spanish type
闽花6号 Minhua 6 24.16 51.64 32.94 43.06 2.84 珍珠豆型 Spanish type
狮头企 Shitouqi 28.22 49.53 28.32 43.99 3.54 珍珠豆型 Spanish type
大明勾鼻 Daminggoubi 28.37 46.47 17.16 52.16 4.88 珍珠豆型 Spanish type
大罗大粒 Daluodali 46.42 23.75 30.61 47.88 2.22 普通型 Normal type
仲恺花1号 Zhongkaihua 1 22.81 52.10 31.10 45.22 1.95 珍珠豆型 Spanish type
宛花8908 Wanhua 8908 22.97 53.39 34.66 40.38 3.24 珍珠豆型 Spanish type
粤油3粒白 Yueyou 3 libai 25.45 48.53 41.38 37.20 0.94 珍珠豆型 Spanish type
文摘墩 Wenzhandun 28.08 48.88 47.66 34.59 0.30 珍珠豆型 Spanish type
ICGV92267 23.25 53.00 46.26 29.66 2.05 珍珠豆型 Spanish type
白沙1016 Baisha 1016 25.24 51.67 44.60 32.11 3.65 珍珠豆型 Spanish type
早花生1 Zaohuasheng 1 42.64 27.90 33.71 45.73 2.48 普通型 Normal type
西藏红 Xizanghong 26.01 51.18 34.15 41.31 2.50 珍珠豆型 Spanish type
花生品种
Peanut variety
蛋白质含量
Protein content
(%)
脂肪含量
Fatty acid content
(%)
油酸
Oleic acid
(%)
亚油酸
Linoleic acid
(%)
硬脂酸
Stearic acid
(%)
植物学类型
Botanical classification
狮选3号 Shixuan 3 30.32 47.70 19.26 51.07 4.26 珍珠豆型 Spanish type
HZ-152 24.11 40.90 15.49 53.25 5.12 珍珠豆型 Spanish type
蚂花2号 Mahua 2 27.09 51.04 31.05 43.64 2.62 珍珠豆型 Spanish type
汕油3号 Shanyou 3 45.69 25.08 35.41 45.52 1.78 珍珠豆型 Spanish type
仲恺花2号 Zhongkaihua 2 25.46 49.71 36.82 42.34 1.95 珍珠豆型 Spanish type
阳江铺地毡 Yangjiangpudizhan 43.61 25.65 37.56 42.33 2.57 珍珠豆型 Spanish type

图5

不同花生种质的FAB2蛋白进化树"

图6

不同花生种质FAB2蛋白序列多重比对"

表2

FAB2启动子区间保守元件"

保守元件
Conversed elements
结合序列
Binding sequence
功能
Function
ABRE ACGTG Involved in the abscisic acid responsiveness
ARE AAACCA cis-acting regulatory element essential for the anaerobic induction
AT-rich sequence TAAAATACT Element for maximal elicitor-mediated activation
AT-TATA-box TATATA Transcription initiation
AuxRR-core GGTCCAT cis-acting regulatory element involved in auxin responsiveness
Box-4 ATTAAT Part of a conserved DNA module involved in light responsiveness
CAAT-box CAAT Common cis-acting element in promoter and enhancer regions
CGTCA-motif CGTCA cis-acting regulatory element involved in the MeJA-responsiveness
G-Box CACGTT cis-acting regulatory element involved in light responsiveness
GA-motif ATAGATAA Part of a light responsive element
GATA-motif AAGATAAGATT Part of a light responsive element
GC-motif CCCCCG Enhancer-like element involved in anoxic specific inducibility
GT1-motif GGTTAA Light responsive element
MRE AACCTAA MYB binding site involved in light responsiveness
MSA-like TCAAACGGT cis-acting element involved in cell cycle regulation
MYB TACCT MYB transcription factor binding site
MYC CATTG MYC transcription factor binding site
O2-site GATGATGTGG cis-acting regulatory element involved in zein metabolism regulation
P-box CCTTTTG Gibberellin-responsive element
TC-rich repeats ATTCTCTAAC cis-acting element involved in defense and stress responsiveness
TCCC-motif TCTCCCT Part of a light responsive element
TCT-motif TCTTAC Part of a light responsive element
TGA-element AACGAC Auxin-responsive element
TGACG-motif TGACG cis-acting regulatory element involved in the MeJA-responsiveness
WRE3 CCACT WRE transcription factor binding site
WUN-motif AAATTTCTT Wun transcription factor binding site
chs-CMA1a TTACTTAA Part of a light responsive element
as-1 TGACG As transcription factor binding site

图7

油酸调控FAB2表达的模型 A: FAB2 启动子区域内AT碱基富集区域示意图; B: 油酸反馈调节FAB2表达的假定模型。"

[1] 鲁清, 李少雄, 陈小平, 周桂元, 洪彦彬, 李海芬, 梁炫强 . 我国南方产区花生育种现状、存在问题及育种建议. 中国油料作物学报, 2017,39:556-566.
Lu Q, Li S X, Chen X P, Zhou G Y, Hong Y B, Li H F, Liang X Q . Current situation, problems and suggestions of peanut breeding in southern china. Chin J Oil Crop Sci, 2017,39:556-566 (in Chinese with English abstract).
[2] Gupta K, Kayam G, Faigenboim-Doron A, Clevenger J, Ozias-Akins P, Hovav R . Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks. Plant Sci, 2016,248:116-127.
[3] Akhtar S, Khalid N, Ahmed I, Shahzad A, Suleria H A . Physicochemical characteristics, functional properties, and nutritional benefits of peanut oil: a review. Crit Rev Food Sci Nutr, 2014,54:1562-1575.
[4] Isleib T G, Pattee H E, Sanders T H, Hendrix K W, Dean L O . Compositional and sensory comparisons between normal- and high-oleic peanuts. J Agric Food Chem, 2006,54:1759-1763.
[5] Dar A A, Choudhury A R, Kancharla P K, Arumugam N . The FAD2 gene in plants: occurrence, regulation, and role. Front Plant Sci, 2017,8:1789. doi: 10.3389/fpls.2017.01789.
[6] Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A . High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004,108:1492-1502.
[7] 刘芳, 王积军, 汤松 . 我国高油酸花生品种选育与推广应用. 中国农技推广, 2017,33(1):14-15.
Liu F, Wang J J, Tang S . High-oleic peanut variety cultivation and popularized application in china. China Agric Technol Extension, 2017,33(1):14-15 (in Chinese with English abstract).
[8] Chi X, Yang Q, Pan L, Chen M, He Y, Yang Z, Yu S . Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep, 2011,30:1393-1404.
[9] Kachroo A, Shanklin J, Whittle E, Lapchyk L, Hildebrand D, Kachroo P . The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol, 2007,63:257-271.
[10] Mandal M K, Chandra-Shekara A C, Jeong R D, Yu K, Zhu S, Chanda B, Navarre D, Kachroo A, Kachroo P . Oleic acid- dependent modulation of NITRIC OXIDE ASSOCIATED1 protein levels regulates nitric oxide-mediated defense signaling in Arabidopsis. Plant Cell, 2012,24:1654-1674.
[11] Shi J, Cao Y, Fan X R, Li M, Wang Y, Ming F . A rice microsomal delta-12 fatty acid desaturase can enhance resistance to cold stress in yeast and Oryza sativa. Mol Breed, 2012,29:743-757.
[12] Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M, Sugano S, Takatsuji H . Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009,22:820-829.
[13] Song N, Hu Z, Li Y, Li C, Peng F, Yao Y, Peng H, Ni Z, Xie C, Sun Q . Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew. Gene, 2013,524:220-227.
[14] Chi X, Zhang Z, Chen N, Zhang X, Wang M, Chen M, Wang T, Pan L, Chen J, Yang Z, Guan X, Yu S . Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.). PLoS One, 2017,12:e189759.
[15] Liu H, Li H, Gu J, Deng L, Ren L, Hong Y, Lu Q, Chen X, Liang X . Identification of the candidate proteins related to oleic acid accumulation during peanut (Arachis hypogaea L.) seed development through comparative proteome analysis. Int J Mol Sci, 2018, 19 (4). pii: E1235. doi: 10.3390/ijms19041235.
[16] Wen S, Liu H, Li X, Chen X, Hong Y, Li H, Lu Q, Liang X . TALEN-mediated targeted mutagenesis of fatty acid desaturase 2 (FAD2) in peanut(Arachis hypogaea L.) promotes the accumulation of oleic acid. Plant Mol Biol, 2018,97:177-185.
[17] Sui N, Wang Y, Liu S, Yang Z, Wang F, Wan S . Transcriptomic and physiological evidence for the relationship between unsaturated fatty acid and salt stress in peanut. Front Plant Sci, 2018,9:7. doi: 10.3389/fpls.2018.00007.
[18] Zhao J, Favero D S, Qiu J, Roalson E H, Neff M M . Insights into the evolution and diversification of the AT-hook motif nuclear localized gene family in land plants. BMC Plant Biol, 2014,14:266. doi: 10.1186/s12870-014-0266-7.
[19] Chen X, Zhu W, Azam S, Li H, Zhu F, Li H, Hong Y, Liu H, Zhang E, Wu H, Yu S, Zhou G, Li S, Zhong N, Wen S, Li X, Knapp S J, Ozias-Akins P, Varshney R K, Liang X . Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnol J, 2013,11:115-127.
[20] Grevengoed T J, Klett E L, Coleman R A . Acyl-CoA metabolism and partitioning. Annu Rev Nutr, 2014,34:1-30.
[21] Yang W, Dong R, Liu L, Hu Z, Li J, Wang Y, Ding X, Chu Z . A novel mutant allele of SSI2 confers a better balance between disease resistance and plant growth inhibition on Arabidopsis thaliana. BMC Plant Biol, 2016,16:208. doi: 10.1186/s12870-016-0898-x.
[22] Theodoulou F L, Eastmond P J . Seed storage oil catabolism: a story of give and take. Curr Opin Plant Biol, 2012,15:322-328.
[23] Kao Y T, Gonzalez K L, Bartel B . Peroxisome function, biogenesis, and dynamics in plants. Plant Physiol, 2018,176:162-177.
[24] Wasternack C, Song S . Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J Exp Bot, 2017,68:1303-1321.
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!