欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (11): 1628-1637.doi: 10.3724/SP.J.1006.2019.82064

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

籼稻背景下导入Wx in等位基因改良稻米食味和理化品质

杨勇1,陆彦1,2,郭淑青1,石仲慧1,赵杰1,范晓磊1,李钱峰1,刘巧泉1,*(),张昌泉1,*()   

  1. 1 扬州大学农学院 / 植物功能基因组学教育部重点实验室 / 江苏省作物基因组学和分子育种重点实验室 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
    2 扬州大学测试中心, 江苏扬州 225009
  • 收稿日期:2018-12-14 接受日期:2019-06-20 出版日期:2019-11-12 网络出版日期:2019-07-15
  • 通讯作者: 刘巧泉,张昌泉
  • 作者简介:E-mail: 1046354026@qq.com
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0100501);国家自然科学基金项目(31872860);国家自然科学基金项目(31561143008);江苏省科技计划项目(BE2018357);江苏省科技计划项目(BK20160464);江苏省高等学校自然科学研究项目(16KJB210011);杂交水稻国家重点实验室(湖南杂交水稻研究中心)开放课题(2018KF04Hunan Hybrid Rice Research Center);扬州大学农学院农学专业本科生创新训练计划项目资助

Improvement of rice eating quality and physicochemical properties by introgression of Wx in allele in indica varieties

YANG Yong1,LU Yan1,2,GUO Shu-Qing1,SHI Zhong-Hui1,ZHAO Jie1,FAN Xiao-Lei1,LI Qian-Feng1,LIU Qiao-Quan1,*(),ZHANG Chang-Quan1,*()   

  1. 1 Jiangsu Key Laboratory for Crop Genomics and Molecular Breeding / Key Laboratory of Plant Functional Genomics of Ministry of Education / Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2 Instrumental Analysis Center, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-12-14 Accepted:2019-06-20 Published:2019-11-12 Published online:2019-07-15
  • Contact: Qiao-Quan LIU,Chang-Quan ZHANG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100501);the National Natural Science Foundation of China(31872860);the National Natural Science Foundation of China(31561143008);the Government of Jiangsu Province(BE2018357);the Government of Jiangsu Province(BK20160464);the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(16KJB210011);the Open Research Fund of State Key Laboratory of Hybrid Rice(Hunan Hybrid Rice Research Center)(2018KF04Hunan Hybrid Rice Research Center);the Personnel Training Program for Undergraduates in Agricultural College of Yangzhou University

摘要:

水稻Wx b等位基因已广泛用于籼稻的品质改良, 但携带该等位基因的一些籼稻米饭往往偏软, 仍需进一步改良。为明确籼稻背景下导入Wx in等位基因对稻米食味品质和理化品质的效应, 分别以携带Wx in的IR64和携带Wx b的9311为供体, 以携带Wx a的籼稻SIR3611 (3611)为受体, 基于分子标记辅助选择, 通过杂交和连续回交的方式构建了3611背景下携带Wx inWx b的近等基因系。系统比较了不同近等基因系间的农艺性状以及稻米的食味和理化品质。结果表明, 近等基因系与受体亲本3611的主要农艺性状基本接近, 无显著差异。NIL(Wx in)稻米的表观直链淀粉含量较亲本3611极显著下降而胶稠度极显著增加。NIL(Wx b)稻米表观直链淀粉含量最低且与之对应的胶稠度最高。近等基因系NIL(Wx in)和NIL(Wx b)稻米的食味值较亲本极显著提高。NIL(Wx in)和NIL(Wx b)稻米的GBSSI丰度与对应的表观直链淀粉含量具有明显的正相关。稻米粉的黏滞性谱、热糊化特性和晶体结构与直链淀粉含量显著相关性。本研究为在我国籼稻品种品质改良中有效利用Wx in等位基因提供了重要依据。

关键词: 水稻, 食味品质, Wx等位基因, 表观直链淀粉含量, 分子标记辅助选择

Abstract:

Nowadays, the Wx b allele has been widely used to improve grain quality of indica rice. However, some indica varieties carrying Wx b allele usually has a much softer texture, which is not favored by consumers in South China. So the grain quality of these varieties needs to be further improved. To understand the effect of Wx in allele on rice eating quality and physicochemical properties in indica rice, we developed two Near-Isogenic Lines (NILs) carrying Wx in and Wx b alleles by crossing an indica variety 3611 (receptor, carrying Wx a) with IR64 (carrying Wx in) and 9311 (carrying Wx b), and seven times of backcrossing based on molecular marker assistant selection (MAS). The Wx effects in controlling the synthesis of amylose, grain quality, and physicochemical properties were investigated. There were non-significant differences in the agronomic traits among the NILs. However, for grain quality characters, we found that the NIL(Wx in) rice showed significantly lower apparent amylose content (AAC) and higher gel consistency (GC), compared with the wild type 3611. Besides, the NIL(Wx b) rice showed the lowest AAC and highest GC among three lines. The NIL(Wx in) rice had a significantly higher taste value than the wild type 3611, while the NIL(Wx b) rice exhibited the highest taste value among the three samples. The granule-bound starch synthase I (GBSSI) level was the highest in 3611, moderate in NIL(Wx in) and lowest in NIL(Wx b), which showed a positive correlation with the AAC level. Also, the starch viscosity, thermal gelatinization property and crystal structure of different rice flours had a high correlation with the AAC level. To sum up, our results proved that both Wx in and Wx b allele can improve the grain quality in 3611 background, and what is more, the Wx in allele might be more useful for the improvement of grain quality in indica rice.

Key words: Oryza sativa L., eating quality, Wx allele, apparent amylose content, molecular marker assisted selection

图1

近等基因系构建过程(A)与近等基因系糙米表型(B) MAS: 分子标记辅助选择; NIL: 近等基因系。"

图2

不同Wx等位基因特异分子标记的检测 A图为利用QRM190分子标记区分Wxa和Wxb的PCR检测结果, 泳道1为3611, 2为9311, 3~7为近等基因系NIL(Wxb); B图为利用基因特异分子标记区分Wxa和Wxin的PCR检测结果, 泳道1为3611, 2为IR64, 3~7为近等基因系NIL(Wxin)。"

表1

近等基因系主要农艺性状表现"

品系
Line
株高
Plant height (cm)
有效分蘖
Tiller number
主穗长
Main panicle length (cm)
结实率
Seed setting rate (%)
千粒重
1000-kernel weight (g)
3611(Wxa) 117.8±1.2 a 5.6±0.9 a 26.5±0.4 a 91.2±2.2 a 30.7±0.8 a
NIL(Wxin) 118.2±2.3 a 5.2±0.8 a 26.7±0.6 a 90.5±3.1 a 29.8±0.5 a
NIL(Wxb) 115.0±1.5 a 6.0±0.6 a 25.8±0.4 a 91.5±2.8 a 31.0±0.2 a

图3

近等基因系成熟种子中GBSS I蛋白游离态(A)和结合态(B)的SDS-PAGE分析 M: 蛋白质分子质量标准; 1~2: 3611(Wxa); 3~4: NIL(Wxin); 5~6: NIL(Wxb); 箭头所示为60 kD的GBSSI蛋白。"

表2

不同近等基因系稻米理化和外观品质"

品系
Line
表观直链淀粉含量
Apparent amylose content (%)
胶稠度
Gel consistency
(mm)
食味值
Taste value
垩白粒率
Chalkiness rate
(%)
垩白度
Chalkness degree
(%)
3611(Wxa) 25.51±1.48 a 42.35±4.17 c 43.15±1.35 c 18.62±0.87 a 2.89±1.05 a
NIL(Wxin) 19.85±0.27 b 78.54±2.32 b 55.09±2.51 b 13.04±0.30 b 1.93±0.06 c
NIL(Wxb) 14.78±0.55 c 87.62±3.48 a 60.51±1.87 a 13.05±0.40 b 2.03±0.32 b

图4

不同近等基因系稻米粉RVA谱分析"

表3

不同近等基因系稻米RVA特征值"

品系
Line
峰值黏度
Peak viscosity (cP)
热浆黏度
Hot paste
viscosity (cP)
崩解值
Breakdown
(cP)
冷胶黏度
Cool paste
viscosity (cP)
回复值
Setback
(cP)
峰值时间
Peak time
(min)
起浆温度
Peak temperature (℃)
3611(Wxa) 3143.2±35.2 b 2607.4±27.1 a 536.4±12.8 c 3960.2±31.6 a 817.6±18.6 a 6.4±0.1 a 70.80±1.1 b
NIL(Wxin) 2961.5±47.1 c 2211.5±31.1 c 750.6±9.3 b 3503.4±28.7 b 514.8±12.6 b 6.3±0.1 a 71.65±1.0 b
NIL(Wxb) 3628.5±28.3 a 2383.3±30.4 b 1245.7±10.5 a 3390.3±21.5 c -238.7±9.5 c 6.4±0.1 a 73.25±1.0 a

图5

不同近等基因系米粉的DSC分析"

表4

不同近等基因系稻米米粉热糊化参数"

品系
Line
起始温度
T0 (°C)
峰值温度
Tp (°C)
终止温度
Tc (°C)
热焓值
ΔH (J G-1)
3611(Wxa) 62.89±0.21 c 67.68±0.62 c 76.54±0.31 c 6.39±0.30 c
NIL(Wxin) 63.57±0.12 b 69.53±0.70 b 77.02±0.07 b 8.01±0.10 b
NIL(Wxb) 64.86±0.41 a 71.33±0.60 a 77.91±0.46 a 8.53±0.11 a

图6

不同近等基因系米粉的X射线衍射(A)和红外光谱分析(B)"

表5

不同近等基因系米粉的X射线衍射和傅里叶变换红外光谱参数"

品系
Line
结晶度
Crystallinity (%)
峰强比值
IR ratio of 1045/1022 cm-1
3611(Wxa) 27.35±0.31 c 0.64±0.01 c
NIL(Wxin) 29.17±0.28 b 0.76±0.01 b
NIL(Wxb) 32.04±0.41 a 0.80±0.01 a
[1] Tilman D, Balzer C, Hill J, Befort B L . Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011,108:20260-20264.
[2] 张昌泉, 赵冬生, 李钱峰, 顾铭洪, 刘巧泉 . 稻米品质性状基因的克隆与功能研究进展. 中国农业科学, 2016,49:4267-4283.
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q . Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Sci Agric Sin, 2016,49:4267-4283 (in Chinese with English abstract).
[3] Zeng D L, Tian Z X, Rao Y C, Dong G J, Yang Y L, Huang L C, Leng Y J, Xu J, Sun C, Zhang G H, Hu J, Zhu L, Gao Z Y, Hu X M, Guo L B, Xiong G S, Wang Y H, Li J Y, Qian Q . Rational design of high-yield and superior-quality rice. Nat Plants, 2017,3:17031.
[4] Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G . The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016,196:702-711.
[5] Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S H, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y . Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc Natl Acad Sci USA, 2009,106:21760-21765.
[6] Mohapatra D, Bal S . Cooking quality and instrumental textural attributes of cooked rice for different milling fractions. J Food Eng, 2006,73:253-259.
[7] 贺晓鹏, 朱昌兰, 刘玲珑, 江玲, 张文伟, 刘宜柏, 万建民 . 不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系. 作物学报, 2010,36:276-284.
He X P, Zhu C L, Liu L L, Jiang L, Zhang W W, Liu Y B, Wan J M . Difference of amylopectin structure among various rice genotypes differing in grain qualities and tts relation to starch physicochemical properties. Acta Agron Sin, 2010,36:276-284 (in Chinese with English abstract).
[8] Li H Y, Gilbert R G . Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohyd Polym, 2018,195:9-17.
[9] Tao K Y, Li C, Yu W W, Gilbert R G, Li E P . How amylose molecular fine structure of rice starch affects functional properties. Carbohyd Polym, 2019,204:24-31.
[10] 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉 . 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015,29:431-438.
Zhu J H, Zhang C Q, Gu M H, Liu Q Q . Progress in the allelic variation of Wx gene and its application in rice breeding. Chin J Rice Sci, 2015,29:431-438 (in Chinese with English abstract).
[11] Cai X L, Wang Z Y, Xing Y Y, Zhang J L, Hong M M . Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content. Plant J, 2010,14:459-465.
[12] Isshiki M, Morino K, Nakajima M, Okagaki R J, Wessler S R, Izawa T, Shimamoto K . A naturally occurring functional allele of the rice waxy locus has a GT to TT mutation at the 5' splice site of the first intron. Plant J, 1998,15:133-138.
[13] Sreenivasulu N, Butardo V M J, Misra G, Cuevas R P, Anacleto R, Kavi Kishor P B . Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot, 2015,66:1737-1748.
[14] Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano H Y, Suzuki Y, Sano Y . Allelic diversification at the wx locus in landraces of Asian rice. Theor Appl Genet, 2008,116:979-989.
[15] Xiang X C, Kang C F, Xu S J, Yang B W . Combined effects of Wx and SSIIa haplotypes on rice starch physicochemical properties. J Sci Food Agric, 2017,97:1229-1234.
[16] Yang B W, Xu S J, Xu L, You H, Xiang X C . Effects of Wx and its interaction with SSIII-2 on rice eating and cooking qualities. Front Plant Sci, 2018,9:456.
[17] Umemoto T, Horibata T, Aoki N, Hiratsuka M, Yano M, Inouchi N . Effects of variations in starch synthase on starch properties and eating quality of rice. Plant Prod Sci, 2008,11:472-480.
[18] Cao X M, Sun H Y, Wang C G, Ren X J, Liu H F, Zhang Z J . Effects of late-stage nitrogen fertilizer application on the starch structure and cooking quality of rice. J Sci Food Agric, 2017,98:2332-2340.
[19] Tian Z X, Yan C J, Qian Q, Yan S, Xie H L, Wang F, Xu J F, Liu G F, Wang Y H, Liu Q Q, Tang S Z, Li J Y, Gu M H . Development of gene-tagged molecular markers for starch synthesis-related genes in rice. Chin Sci Bull, 2010,55:3768-3777.
[20] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980,8:4321-4325.
[21] 刘巧泉, 张景六, 王宗阳, 洪孟民, 顾铭洪 . 根癌农杆菌介导的水稻高效转化系统的建立. 植物生理学报, 1998,24:259-271.
Liu Q Q, Zhang J L, Wang Z M, Hong M M, Gu M H . A highly efficient transformation system mediated by Agrobacterium tumefaciens in rice(Oryza sativa L.). Acta Phytophysiol Sin, 1998,24:259-271 (in Chinese with English abstract).
[22] Zhang C Q, Zhu L J, Shao K, Gu M M, Liu Q Q . Toward underlying reasons for rice starches having low viscosity and high amylose: physiochemical and structural characteristics. J Sci Food Agric, 2013,93:1543-1551.
[23] Liu D R, Wang W, Cai X L . Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.). Plant Biotechnol J, 2015,12:1297-1307.
[24] 舒庆尧, 吴殿星, 夏英武, 高明尉 , Anna M C. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998,31:25-29.
Shu Q Y, Wu D X, Xia Y W, Gao M W, Anna M C . Relationship between RVA profile characteristics of rice starch and edible quality. Sci Agric Sin, 1998,31:25-29 (in Chinese with English abstract).
[25] Zhang C Q, Chen S J, Ren X Y, Lu Y, Liu D R, Cai X L, Li Q F, Gao J P, Liu Q Q . Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. J Agric Food Chem, 2017,65:2222.
[26] Cai J W, Man J M, Huang J, Liu Q Q, Wei W X, Wei C X . Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohyd Polym, 2015,125:35-44.
[27] Cooke D, Gidley M J . Loss of crystalline and molecular order during starch gelatinisation: origin of the enthalpic transition. Carbohyd Polym, 1992,227:103-112.
[28] Sevenou O, Hill S E, Farhat I A, Mitchell J R . Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol, 2002,31:79-85.
[29] Chen M J, Liu G F, Yu H, Wang B, Li J Y . Towards molecular design of rice plant architecture and grain quality. Chin Sci Bull, 2018,63:1276-1289.
[30] Chen M H, Bergman C J, Pinsona S R M, Fjellstrom R G . Waxy gene haplotypes: associations with pasting properties in an international rice germplasm collection. J Cereal Sci, 2008,48:781-788.
[31] Hoai T T T, Matsusaka H, Toyosawa Y, Suu T D, Satoh H, Kumamaru T . Influence of single-nucleotide polymorphisms in the gene encoding granule-bound starch synthase I on amylose content in Vietnamese rice cultivars. Breed Sci, 2014, 64:142.
[32] Luo J X, Jobling S A, Millar A, Morell M K, Li Z Y . Allelic effects on starch structure and properties of six starch biosynthetic genes in a rice recombinant inbred line population. Rice, 2015,8:15.
[33] Li Q F, Liu X Y, Zhang C Q, Jiang L, Jiang M Y, Zhong M, Fan X L, Gu M H, Liu Q Q . Rice soluble starch synthase: I. Allelic variation, expression, function, and interaction with Waxy. Front Plant Sci, 2018,9:1591.
[34] Wang K, Hasjim J, Wu A C, Li E P, Henry R J, Gilbert R G . Roles of GBSSI and SSIIa in determining amylose fine structure. Carbohydr Polym, 2015,127:264-74.
[35] Zhou H J, Wang L J, Liu G F, Meng X B, Jing Y H, Shu X L, Kong X L, Sun J A, Yu H, Smith S M, Wu D X, Li J Y . Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc Natl Acad Sci USA, 2016,113:12844-12849.
[36] Fan M Y, Wang X J, Sun J, Zhang Q, Xu Z J, Xu Q . Effect of indica pedigree on eating and cooking quality in rice backcross inbred lines of indica and japonica crosses. Breed Sci, 2017,67:450-458.
[37] Misra G, Badoni S, Domingo C J, Cuevas R P O, Llorente C, Mbanjo E G N, Sreenivasulu N . Deciphering the genetic architecture of cooked rice texture. Front Plant Sci, 2018,9:1405.
[38] Teng B, Zeng R Z, Wang Y C, Liu Z Q, Zhang Z M, Zhu H T, Ding X H, Li W T, Zhang G Q . Detection of allelic variation at the Wx locus with single-segment substitution lines in rice(Oryza sativa L.). Mol Breed, 2012,30:583-595.
[39] Teng B, Zhang Y, Du S Y, Wu J D, Li Z F, Luo Z H, Yang J B . Crystalline, thermal and swelling properties of starches from single-segment substitution lines with different Wx alleles in rice(Oryza sativa L.). J Sci Food Agric, 2017,97:108-114.
[40] Bao J S, Kong X G, Xie, J K, Xu L J Analysis of genotypic and environmental effects on rice starch: 1. Apparent amylose content, pasting viscosity, and gel texture. J Agric Food Chem, 2004,52:6010-6016.
[41] Xu Y J, Ying Y N, Ou-Yang S H, Duan X L, Sun H, Jiang S K, Sun S C, Bao J S . Factors affecting sensory quality of cooked japonica rice. Rice Sci, 2018,2:330-339.
[42] Champagne E T, Bett-Garber K L, Fitzgerald M A, Grimm C C, Lea J, Ohtsubo K I, Jongdee S, Xie L H, Bassinello P Z, Resurreccion A, Ahmad R, Habibi F, Reinke R . Important sensory properties differentiating premium rice varieties. Rice, 2010,3:270-281.
[43] Inukai T, Hirayama Y . Comparison of starch levels reduced by high temperature during ripening in japonica rice lines near- isogenic for the Wx locus. J Agron Crop Sci, 2010,196:296-301.
[44] Wang K, Zhou Q F, Liu J Y, Qiu F L, Angelita dela Paz M, Larazo W, Yang Y Z, Xie F M . Genetic effects of Wx allele combinations on apparent amylose content in tropical hybrid rice. Cereal Chem, 2017,94:887-891.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!