欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (4): 513-519.doi: 10.3724/SP.J.1006.2020.91051

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递

李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明()   

  1. 四川农业大学小麦研究所, 四川成都 611130
  • 收稿日期:2019-08-07 接受日期:2019-12-26 出版日期:2020-04-12 网络出版日期:2020-01-16
  • 通讯作者: 郝明
  • 作者简介:李庆成, E-mail: 1808654030@qq.com;|黄磊, E-mail: 1129559183@qq.com
  • 基金资助:
    本研究由四川省教育厅重点项目(16ZA0028);四川省科技厅应用基础研究面上项目资助(2019YJ0415)

Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes

LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming()   

  1. Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
  • Received:2019-08-07 Accepted:2019-12-26 Published:2020-04-12 Published online:2020-01-16
  • Contact: Ming HAO
  • Supported by:
    This study was supported by the Key Projects of Sichuan Provincial Department of Education(16ZA0028);the Applied Basic Research Programs of Science & Technology Department of Sichuan Province(2019YJ0415)

摘要:

小麦-黑麦6RS/6AL易位系HM812-41携带抗白粉病基因Pm56。为评价其育种利用潜力, 以HM812-41为亲本分别与推广品种蜀麦580、蜀麦830和蜀麦969杂交, 杂种F1与中国春进行正反交, 研究6RS/6AL易位染色体在不同背景中的遗传稳定性及其通过雌雄配子的传递规律。同时, 利用“双顶交”法改良易位系的综合农艺性状。基因组原位杂交结果表明, 6RS/6AL易位染色体在传递过程中结构稳定。6RS/6AL易位染色体可以高频率地通过雌、雄配子传递, 其传递率分别为45.05%~53.33%和43.94%~53.04%。初步分析“双顶交”F2分离群体表明, 6RS/6AL易位染色体对主要农艺性状如株高、穗长、小穗数和自交结实率没有明显的不利影响。用“双顶交”法可以快速地改良易位系的综合农艺性状。

关键词: 小麦, 黑麦, 白粉病, 6RS/6AL易位, 配子传递率, 遗传稳定性

Abstract:

The wheat-rye 6RS/6AL translocation line HM812-41 harbors the powdery mildew resistance gene Pm56. In order to evaluate the potential utilization in breeding, the translocation line was crossed to common wheat varieties Shumai 580, Shumai 830, and Shumai 969. The F1 hybrids were then reciprocally crossed with Chinese spring to estimate the genetic stability of 6RS/6AL and its transmission rate through male and female gametes in different genetic backgrounds. Double-top crossing (DTC) strategy was used to improve the agronomic traits of the translocation line. Genome in situ hybridization analysis indicated that the 6RS/6AL translocation was very stable during transmission. The 6RS/6AL translocation was transmitted to offsprings with a high frequency, which was 45.05%-53.33% for female gametes and 43.94%-53.04% for male gametes. Based on the agronomical performances of DTC F2 populations, we found that the 6RS/6AL translocation was not linked to obvious defects for major agronomic traits, such as plant height, spike length, spikelet number and seed-setting ratio in selfing. The agronomic traits of the translocation line can be obviously improved through DTC strategy.

Key words: wheat, rye (Secale cereal), powdery mildew, 6RS/6AL translocation, gamete transmission, genetic stability

图1

6RS/6AL易位系的染色体着丝粒 A: 易位系HM812-41的42条染色体。B: 探针6C6检测的易位系HM812-41着丝粒。C: 探针pAWRC.1的易位系HM812-41着丝粒。D: B和C的整合。箭头指易位染色体6RS/6AL的着丝粒。"

表1

6RS/6AL易位染色体在小麦背景中通过雌雄配子的传递率"

组合
Combination
传递方式
Type of
transmission
植株总数
No. of total plants
含标记植株数
No. of plants with 6RS
传递率
Ratio of transmission (%)
χ2
(蜀麦580×HM812-41)×中国春
(Shumai 580×HM812-41)×CS
雌配子Female 91 41 45.05 0.35
中国春×(蜀麦580×HM812-41)
CS×(Shumai 580×HM812-41)
雄配子Male 93 43 46.24 0.47
(蜀麦830×HM812-41)×中国春
(Shumai 830×HM812-41)×CS
雌配子Female 120 64 53.33 0.47
中国春×(蜀麦830×HM812-41)
CS×(Shumai 830×HM812-41)
雄配子Male 115 61 53.04 0.51
(蜀麦969×HM812-41)×中国春
(Shumai 969×HM812-41)×CS
雌配子Female 75 36 48.00 0.73
中国春×(蜀麦969×HM812-41)
CS×(Shumai 969×HM812-41)
雄配子Male 66 29 43.94 0.32

图2

6RS/6AL易位系的改良流程和植株表现 A: 6RS/6AL易位系的改良流程; B: 田间植株表现。从左至右的单株分别为: 易位系HM812-41、蜀麦580、蜀麦830、蜀麦969、蜀麦969/HM812-41 F1、蜀麦969/HM812-41//蜀麦830 F1、蜀麦969/HM812-41//蜀麦830/3/WJL3931 F1和蜀麦969/HM812-41//蜀麦830/3/WJL3931 F2。"

图3

两个“双顶交”F2分离群体的主要农艺性状表现 A: 株高; B: 穗长; C: 小穗数; D: 自交结实率。Pop.1+和Pop.1-分别表示含和不含6RS/6AL易位染色体的蜀麦969/HM812-41//蜀麦830/3/WJL3931 F2亚群体; Pop.2+和Pop.2-分别表示含和不含6RS/6AL易位染色体的蜀麦969/HM812-41//WJL5606/3/蜀麦126 F2亚群体。**: 表示含(+)与不含(-)6RS/6AL易位染色体亚群体间差异极显著(两尾t-test, P < 0.01)。"

[1] Ehdaie B, Whitkus R W, Waines J G . Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci, 2003,43:710-717.
[2] Sharma S, Xu S, Ehdaie B, Hoops A, Close T J, Lukaszewski A J, Waines J G . Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet, 2011,122:759-769.
[3] 张爱民, 童依平, 王道文 . 小麦遗传育种学家李振声. 遗传, 2008,30:1239-1240.
Zhang A M, Tong Y P, Wang D W . Wheat geneticist Li Zhensheng. Hereditas, 2008,30:1239-1240 (in Chinese).
[4] Li Z S, Li B, Tong Y . The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genom, 2008,35:451-456.
[5] 陈佩度, 张守忠, 王秀娥, 王苏玲, 周波, 冯祎高, 刘大钧 . 抗白粉病高产小麦新品种南农9918. 南京农业大学学报, 2002,25:105-106.
Chen P D, Zhang S Z, Wang X E, Wang S L, Zhou B, Feng Y G, Liu D J . New wheat variety Nannong 9918 with high yield and powdery mildew resistance. J Nanjing Agric Univ, 2002,25:105-106 (in Chinese with English abstract).
[6] Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P . Serine threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011,108:7727-7732.
[7] 李立会, 杨欣明, 李秀全, 董玉琛, 陈学明 . 通过属间杂交向小麦转移冰草优异基因的研究. 中国农业科学, 1998,31(6):1-6.
Li L H, Yang X M, Li X, Dong Y C, Chen X M . Introduction of desirable genes from Agropyron cristatum into common wheat by intergeneric hybridization. Sci Agric Sin, 1998,31(6):1-6 (in Chinese with English abstract).
[8] 杜丽媛, 刘伟华, 杨欣明, 李秀全, 李立会 . 小麦-冰草新种质普冰2011姊妹系的育种效应分析. 植物遗传资源学报, 2016,17:395-403.
Du L Y, Liu W H, Yang X M, Li X Q, Li L H . Breeding achievement analysis of novel wheat- Agropyron cristatum germplasm sister lines pubbing 2011. J Plant Genet Resour, 2016,17:395-403 (in Chinese with English abstract).
[9] Sears E R. Chromosome engineering in wheat. In: Stadler Symp., Vol. 4, University of Missouri, Columbia, USA. 1972, pp 23-38.
[10] 李桂萍, 陈佩度, 张瑞奇, 王春梅, 曹爱忠, 张守忠 . 小麦-簇毛麦6VS/6AL易位染色体在不同小麦背景中的遗传稳定性及其在配子中的传递. 麦类作物学报, 2007,27:183-187.
Li G P, Chen P D, Zhang R Q, Wang C M, Cao A Z, Zhang S Z . Transmission of the 6VS/6AL chromosome through gametes and its genetic stability in different genetic background. J Triticeae Crops, 2007,27:183-187 (in Chinese with English abstract).
[11] 王海燕, 肖进, 袁春霞, 徐涛, 于春燕, 孙昊杰, 陈佩度, 王秀娥 . 携带抗白粉病基因Pm21的小麦-簇毛麦小片段易位染色体在不同小麦背景中的传递率及遗传稳定性. 作物学报, 2016,42:361-367.
Wang H Y, Xiao J, Yuan C X, Xu T, Yu C Y, Sun H J, Chen P D, Wang X E . Transmission and genetic stability of no-homoeologous small fragment wheat- Haynaldia villosa translocation chromosomes with Pm21 in various cultivar backgrounds of common wheat. Acta Agron Sin, 2016,42:361-367 (in Chinese with English abstract).
[12] 李桂萍, 陈佩度, 张守忠, 赵和 . 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源学报, 2011,12 : 744-749.
Li G P, Chen P D, Zhang S Z, Zhao H . Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. J Plant Genet Resour, 2011,12:744-749 (in Chinese with English abstract).
[13] Zhao R, Liu B, Jiang Z, Chen T, Wang L, Ji Y, Hu Z, He H, Bie T . Comparative analysis of genetic effects of wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL. Plant Breed, 2019, .
[14] Martis M M, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler K G, Scholz U, Hackauf B, Korzun V, Schön C C, Dolezel J, Bauer E, Mayer K F X, Stein N . Reticulate evolution of the rye genome. Plant Cell, 2013,25:3685-3698.
[15] Heun M . Introgression of powdery mildew resistance from rye into wheat. Phytopathology, 1990,80:242-245.
[16] Friebe B, Heun M, Tuleen N, Zeller F J, Gill B S . Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci, 1994,34:621-625.
[17] Hsam S L K, Zeller F J . Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar Amigo. Plant Breed, 1997,116:119-122.
[18] Ren T H, Yang Z J, Yan B J, Zhang H Q, Fu S L, Ren Z L . Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica, 2009,169:207-213.
[19] An D, Zheng Q, Zhou Y, Ma P, Lv Z, Li L, Li B, Luo Q, Xu H, Xu Y . Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chrom Res, 2013,21:419-432.
[20] Fu S L, Ren Z L, Chen X M, Yan B J, Tan F Q, Fu T H, Tang Z X . New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance. J Plant Res, 2014,127:743-753.
[21] Hao M, Liu M, Luo J, Fan C, Yi Y, Zhang L, Yuan Z, Ning S, Zheng Y, Liu D . Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci, 2018,9:1040.
[22] Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z, Wu B, Lan X, Yuan Z, Huang L, Wang J, Zheng K, Chen W, Yu M, Chen X, Chen M, Wei Y, Zhang H, Kishii M, Hawkesford M J, Mao L, Zheng Y, Liu D . A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor Appl Genet, 2019,132:2285-2294.
[23] 刘英华, 赵桃, 龙海, 邓光兵, 潘志芬, 余懋群 . 簇毛麦(Dasypyrum villosum)矮秆突变体的鉴定. 麦类作物学报, 28:946-949.
Liu Y H, Zhao T, Long H, Deng G B, Pan Z F, Yu M Q . Characterization of a dwarf mutant in Dasypyrum villosum. J Triticeae Crops, 2008,28:946-949 (in Chinese with English abstract).
[24] Yan Z, Wan Y, Liu K . Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chin Sci Bull, 2002,47:220-225.
[25] Qiu L, Tang Z X, Li M, Fu S L . Development of new PCR-based markers specific for chromosome arms of rye ( Secale cereale L.). Genome, 2016,59:159-165.
[26] 邹晓欢, 郝明, 罗江陶, 张连全, 袁中伟, 刘登才 . 中国特有小麦的易位染色体鉴定. 麦类作物学报, 33:1065-1070.
Zou X H, Hao M, Luo J T, Zhang L Q, Yuan Z W, Liu D C . Identification of translocated chromosomes in Chinese endemic wheat accessions. J Triticeae Crops, 2013,33:1065-1070 (in Chinese with English abstract).
[27] 唐宗祥 . 重复序列引起小麦染色体结构、基因组及性状的改变. 四川农业大学博士学位论文, 2006, 四川雅安.
Tang Z X . Variation of Chromosomal Structure, Genome and Phenotype of Wheat Caused by Repetitive DNA Sequence. PhD Dissertation of Sichuan Agricultural University, Ya’an, Sichuan, China, 2006 (in Chinese with English abstract).
[28] Hao M, Luo J, Yang M, Zhang L, Yan Z, Yuan Z, Zheng Y, Zhang H, Liu D . Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and KL with rye. Genome, 2011,54:959-964.
[29] 张文俊, 景健康, 胡含 . 黑麦6R染色体在小麦背景中的传递. 遗传学报, 1995,22:211-216.
Zhang W J, Jing J K, Hu H . The transmission of rye chromosome 6R in wheat background. Acta Genet Sin, 1995,22:211-216 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[9] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[10] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[11] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[12] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[13] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[14] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[15] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!