作物学报 ›› 2020, Vol. 46 ›› Issue (7): 1006-1015.doi: 10.3724/SP.J.1006.2020.93048
田红丽**,杨扬**,王璐,王蕊,易红梅,许理文,张云龙,葛建镕,王凤格(),赵久然()
TIAN Hong-Li**,YANG Yang**,WANG Lu,WANG Rui,YI Hong-Mei,XU Li-Wen,ZHANG Yun-Long,GE Jian-Rong,WANG Feng-Ge(),ZHAO Jiu-Ran()
摘要:
为加强玉米品种管理和知识产权保护, 评估确定了一套兼容多技术平台, 适于玉米分子鉴定的SNP位点组合, 该组合包含384个位点; 构建了335个玉米杂交种SNP-DNA指纹, 并针对位点和样品从各个角度进行分析。384个位点全部分布在基因内区域, 显示了较好的多态性; MAF、PIC、DP平均值分别为0.39、0.36、0.60, 384个位点中88%的位点MAF值高于0.30, 98%的位点PIC值高于0.30, 98%的位点DP值高于0.50。对335个玉米杂交种进行遗传相似系数两两比较, GD (1 - Nei遗传距离)的变异范围为0.60~0.99, GD≥0.98、0.95、0.90者分别占比0.10%、0.38%、1.40%; GS (相同等位基因比)的变异范围为0.50~0.99, GS≥0.98、0.95、0.90者分别占比0.03%、0.11%、0.35%。从384个位点中抽取最优位点组合, 12个位点组合时品种识别率为0.99, 20个位点组合能够识别335个品种。综上所述, 本研究报道的384个核心SNP位点具有兼容多平台、高稳定性、高重复性、高品种区分能力, 利用核心位点构建了335个玉米杂交种SNP-DNA指纹, 为玉米品种分子鉴定、指纹数据构建以及分子育种提供了关键数据支撑。
[1] | 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展. 中国农学通报, 2012,28:154-158. |
Tang L Q, Xiao C L, Wang W P. Research and application progress of SNP markers. Chin Agric Bull, 2012,28:154-158 (in Chinese with English abstract). | |
[2] | UPOV (International Union for the Protection of New Varieties of Plants). Possible Used of Molecular Markers in the Examination of Distinctness, Uniformity and Stability (DUS). UPOV, Geneva, Switzerland, 2011. |
[3] | Mammadov J, Chen W, Mingus J, Thompson S, Kumpatla S. Development of versatile gene-based SNP assays in maize (Zea mays L.). Mol Breed, 2012,29:779-790. |
[4] | 魏中艳, 李慧慧, 李骏, Gamar Y A, 马岩松, 邱丽娟. 应用SNP精准鉴定大豆种质及构建可扫描身份证. 作物学报, 2018,44:315-323. |
Wei Z Y, Li H H, Li J, Gamar Y A, Ma Y S, Qiu L J. Accurate identification of varieties by nucleotide polymorphisms and establishment of scannable variety IDs for soybean germplasm. Acta Agron Sin, 2018,44:315-323 (in Chinese with English abstract). | |
[5] | 李志远, 于海龙, 方智远, 杨丽梅, 刘玉梅, 庄木, 吕红豪, 张扬勇. 甘蓝SNP标记开发及主要品种DNA指纹图谱构建. 中国农业科学, 2018,51:2771-2787. |
Li Z Y, Yu H L, Fang Z Y, Yang L M, Liu Y M, Zhuang M, Lyu H H, Zhang Y Y. Development of SNP markers in cabbage and construction of DNA fingerprinting of main varieties. Sci Agric Sin, 2018,51:2771-2787 (in Chinese with English abstract). | |
[6] | Jung J K, Park S W, Liu W Y, Kang B C. Discovery of single nucleotide polymorphism in Capsicum and SNP markers for cultivar identification. Euphytica, 2010,175:91-107. |
[7] | Kuang M, Wei S J, Wang Y Q, Zhou D Y, Ma L, Fang D, Yang W H, Ma Z Y. Development of a core set of SNP markers for the identification of upland cotton cultivars in China. J Integr Agr, 2016,15:964-962. |
[8] |
Chen H D, Xie W B, He H, Yu H H, Chen W, Li J, Yu R B, Yao Y, Zhang W H, He Y Q, Tang X Y, Zhou F S, Deng X W, Zhang Q F. A high-density SNP genotyping array for rice biology and molecular breeding. Mol Plant, 2014,7:541-553.
pmid: 24121292 |
[9] |
Winfield M O, Allen A M, Burridge A J, Barker G L A, Benbow H R, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley A R, Edwards K J. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J, 2016,14:1195-1206.
pmid: 26466852 |
[10] |
Song Q J, Hyten D L, Jia G F, Quigley C V, Fickus E W, Nelson R L, Cregan P B. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One, 2013,8:e54985.
doi: 10.1371/journal.pone.0054985 pmid: 23372807 |
[11] | Hulse-Kemp A M, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang D D, Frelichowski J, Giband M, Hague S, Hinze L L, Kochan K J, Riggs P K, Scheffler J A, Udall J A, Ulloa M, Wang S S, Zhu Q H, Bag S K, Bhardwaj A, Burke J J, Byers R L, Claverie M, Gore M A, Harker D B, Islam M S, Jenkins J N, Jones D C, Lacape J M, Llewellyn D J, Percy R G, Pepper A E, Poland J A, Rai K M, Sawant S V, Singh S K, Spriggs A, Taylor J M, Wang F, Yourstone S M, Zheng X T, Lawley C T, Ganal M W, Deynze A V, Wilson I W, Stelly D M. Development of a 63K SNP Array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. Genes Genomes Genet, 2015,5:1187-1209. |
[12] |
Lai J S, Li R Q, Xu X, Jin W W, Xu M L, Zhao H N, Xiang X K, Song W B, Ying K, Zhang M, Jiao Y P, Ni P X, Zhang J G, Li D, Guo X S, Ye K X, Jian M, Wang B, Zheng H S, Liang H Q, Zhang X Q, Wang S C, Chen S J, Li J S, Fu Y, Springer N M, Yang H M, Wang J, Dai J R, Schnable P S, Wang J. Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet, 2010,42:1027-1030.
doi: 10.1038/ng.684 pmid: 20972441 |
[13] |
Jiao Y P, Zhao H N, Ren L H, Song W B, Zeng B, Guo J J, Wang B B, Liu Z P, Chen J, Li W, Zhang M, Xie S J, Lai J S. Genome-wide genetic changes during modern breeding of maize. Nat Genet, 2012,44:812-817.
doi: 10.1038/ng.2312 pmid: 22660547 |
[14] |
Chia J M, Song C, Bradbury P J, Costich D, Leon N D, Doebley J, Elshire R J, Gaut B, Geller L, Glaubitz J C, Gore M, Guill K E, Holland J, Hufford M B, Lai J S, Li M, Liu X, Lu Y L, McCombie R, Nelson R, Poland J, Prasanna B M, Pyhäjärvi T, Rong T Z, Sekhon R S, Sun Q, Tenaillon M I, Tian F, Wang J, Xu X, Zhang Z U, Kaeppler S M, Ross-Ibarra J, McMullen M D, Buckler E S, Zhang G Y, Xu Y B, Ware D. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet, 2012,44:803-809.
pmid: 22660545 |
[15] |
Ganal M W, Durstewitz G, Polley A, Bérard A, Buckler E S, Charcosset A, Clarke J D, Graner E M, Hansen M, Joets J, Paslier M C, McMullen M D, Montalent P, Rose M, Schön C C, Sun Q, Walter H, Martin O C, Falque M. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping and genetic mapping to compare with the B73 reference genome. PLoS One, 2011,6:e28334.
doi: 10.1371/journal.pone.0028334 pmid: 22174790 |
[16] |
Cheng X, Ren Y H, Jian Y Q, Guo Z F, Zhang Y, Xie C X, Fu J J, Wang H W, Wang G Y, Xu Y B, Li P, Zou C. Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Mol Breed, 2017,37:20.
doi: 10.1007/s11032-017-0622-z pmid: 28255264 |
[17] |
Jones E, Chu W C, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith O S, McMullen M D, Bezawada C, Warren J, Babayev J, Basu S, Smith S. Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.). Mol Breed, 2009,24:165-176.
doi: 10.1007/s11032-009-9281-z |
[18] |
Yan J B, Yang X H, Shah T, Sánchez-Villeda H, Li J S, Warburton M, Zhou Y, Crouch J H, Xu Y B. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed, 2010,25:441-451.
doi: 10.1007/s11032-009-9343-2 |
[19] |
Tian H L, Wang F G, Zhao J R, Yi H M, Wang L, Wang R, Yang Y, Song W. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties. Mol Breed, 2015,35:136.
pmid: 26052247 |
[20] | 王凤格, 赵久然, 杨扬. 国家审定玉米品种SSR指纹图谱. 北京: 中国农业科学技术出版社, 2015. |
Wang F G, Zhao J R, Yang Y. SSR Fingerprinting Data of National Approval of Maize Cultivars. Beijing: China Agricultural Science and Technology Press, 2015 (in Chinese). | |
[21] | 王凤格, 易红梅, 赵久然, 刘平, 张新明, 田红丽, 堵苑苑. 玉米品种鉴定技术规程SSR标记法. 中华人民共和国农业行业标准, NY/T1432-2014, 2014. |
Wang F G, Yi H M, Zhao J R, Liu P, Zhang X M, Tian H L, Du Y Y. Protocol for the Identification of Maize Varieties—SSR Marker Method. Agricultural Industry Standards of the People's Republic of China, NY/T1432-2014, 2014 (in Chinese). | |
[22] | 王凤格, 赵久然, 杨扬. 基于遗传算法的植物品种真实性鉴定位点筛选方法. 中国发明专利, 2013,ZL201310629676. 2. |
Wang F G, Zhao J R, Yang Y. The Method of Locus Selecting for Plant Variety Authenticity Identification Based on Genetic Algorithm. Chinese Invention Patent, 2013, ZL201410495417. X (in Chinese). | |
[23] |
Tessier C, David J, This P, Boursiquot J M, Charrier A. Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet, 1999,98:171-177.
doi: 10.1007/s001220051054 |
[24] | 王凤格, 田红丽, 易红梅, 赵涵, 霍永学, 匡猛, 张力科, 吕远大, 丁曼卿, 赵久然. 植物品种DNA指纹鉴定原理及其鉴定方案. 分子植物育种, 2018,16:4756-4766. |
Wang F G, Tian H L, Yi H M, Zhao H, Huo Y X, Kuang M, Zhang L K, Lyu Y D, Ding M Q, Zhao J R. Principle and strategy of DNA fingerprint identification of plant variety. Mol Plant Breed, 2018,16:4756-4766 (in Chinese with English abstract). | |
[25] | 赵久然, 王凤格, 田红丽, 易红梅, 王蕊, 葛建镕. 适于农作物品种分子身份鉴别和确权鉴定的检测方法. 中国发明专利, 2017,201710527354.5. |
Zhao J R, Wang F G, Tian H L, Yi H M, Wang R, Ge J R. Detection Methods for Identity Distinguish and Intellectual Property Confirmation of Crop Varieties Using Molecular Markers. Chinese Invention Patent, 2017,ZL201710527354.5 (in Chinese). | |
[26] |
Rousselle Y, Jones E, Charcosset A, Moreau P, Robbins K, Stich B, Knaak C, Flament P, Karaman Z, Martinant J R, Fourneau M, Taillardat A, Romestant M, Tabel C, Bertran J, Ranc N, Lespinasse D, Blanchard P, Kahler A, Chen J, Kahler J, Dobrin S, Warner T, Ferris R, Smith S. Study on essential derivation in maize: III. Selection and evaluation of a panel of single nucleotide polymorphism loci for use in European and North American Germplasm. Crop Sci, 2015,55:1170-1180.
doi: 10.2135/cropsci2014.09.0627 |
[27] | ISF. Guidelines for Handling Disputes on Essential Derivation of Maize Lines. 2014 ( Adopted by the ISF maize and sorghum section in Beijing, in May 2014), (www.worldseed.org). |
[28] |
Nelson B K, Kahler A L, Kahler J L, Mikel M A, Thompson S A, Ferriss R S, Smith S, Jones E S. Evaluation of the numbers of single nucleotide polymorphisms required to measure genetic distance in maize (Zea may L.). Crop Sci, 2011,51:1470-1480.
doi: 10.2135/cropsci2010.07.0401 |
[29] | Kahler A L, Kahler J L, Thompson S A, Ferriss R S, Jones E S, Nelson B K, Mikel M A, Smith S. North American study on essential derivation in maize: II. Selection and evaluation of a panel of simple sequence repeat loci. Crop Sci, 2010,50:486-503. |
[30] | ISF. Guidelines for handling disputes on essential derivation of maize lines. 2008 ( Adopted by the ISF maize and sorghum section in Prague, May 2008), (www.worldseed.org). |
[31] | 王凤格, 赵久然, 郭景伦, 佘花娣, 陈刚. 比较三种DNA指纹分析方法在玉米品种纯度及真伪鉴定中的应用. 分子植物育种, 2003,1:655-661. |
Wang F G, Zhao J R, Guo J L, She H D, Chen G. Comparison of three DNA fingerprint analyzing methods for maize cultivars’ identification. Mol Plant Breed, 2003,1:655-661 (in Chinese with English abstract). |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[4] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[5] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[6] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[7] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[8] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[9] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[10] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[11] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[12] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[13] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[14] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[15] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
|