欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1185-1194.doi: 10.3724/SP.J.1006.2020.93062

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米阳离子/质子逆向转运蛋白ZmNHX7的功能鉴定

张凌霄1,2,焦珍珍2,卜华虎2,王逸茹2,李健2,3,郑军1,2,*()   

  1. 1北京农学院植物科学技术学院, 北京 102206
    2中国农业科学院作物科学研究所, 北京 100081
    3吉林农业大学农学院, 吉林长春 130118
  • 收稿日期:2020-02-06 接受日期:2020-03-24 出版日期:2020-08-12 网络出版日期:2020-04-03
  • 通讯作者: 郑军
  • 作者简介:E-mail: 13522840682@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0101002)

Functional identification of maize cation/proton antiporter ZmNHX7

ZHANG Ling-Xiao1,2,JIAO Zhen-Zhen2,BU Hua-Hu2,WANG Yi-Ru2,LI Jian2,3,ZHENG Jun1,2,*()   

  1. 1College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2020-02-06 Accepted:2020-03-24 Published:2020-08-12 Published online:2020-04-03
  • Contact: Jun ZHENG
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101002)

摘要:

植物阳离子/质子逆向转运蛋白可以维持细胞内的离子平衡, 在抵御离子毒害过程中发挥重要作用。本研究克隆了一个编码玉米阳离子/质子逆向转运蛋白的基因, 命名为ZmNHX7。该基因编码序列(coding sequence, CDS)全长3411 bp, 编码一条含1136个氨基酸的多肽链。ZmNHX7基因在玉米各组织部位均有表达, 在V7 (第7片叶完全展开)时期的根和茎中表达量较高。在NaCl与LiCl的胁迫条件下, 该基因表达量上调。系统进化树分析将ZmNHX7与拟南芥质膜阳离子/质子逆向转运蛋白AtNHX7和AtNHX8归为一类, 亚细胞定位结果表明该蛋白定位于细胞膜和核膜上。将ZmNHX7基因转入拟南芥T-DNA插入突变体中, 转基因互补株系可以恢复该突变体对Li+的耐受性。这些结果表明, ZmNHX7编码一个玉米质膜阳离子/质子逆向转运蛋白, 在缓解Li+对植物的毒害和维持细胞内的离子平衡等方面发挥重要作用。

关键词: 玉米, ZmNHX7, 逆向转运蛋白, 离子毒害

Abstract:

Plant cation/proton antiporters can maintain intracellular ion homeostasis and resist ion toxicity. In this study, a gene encoding a maize cation/proton antiporter was cloned and named as ZmNHX7. The coding sequence of ZmNHX7 was 3411 bp, encoding a protein with 1136 amino acids. ZmNHX7 is ubiquitously expressed in various tissues of maize, With higher expression level in roots and stems at the V7 stage. The expression of ZmNHX7 was induced by NaCl and LiCl stresses. In phylogenetic tree ZmNHX7 showed a close relation with AtNHX7 and AtNHX8 of Arabidopsis thaliana. ZmNHX7 was located in cell membrane and nuclear membrane by confocal laser scanning microscopy analysis of the lower epidermis of tobacco leaves. When ZmNHX7 gene was transformed into the Arabidopsis thaliana T-DNA insertion mutant nhx8, the transgenic complementary lines could restore the tolerance of nhx8 to Li+. These results indicate that ZmNHX7 encodes a plasma membrane cation/proton antiporter of maize, which plays an important role in reducing the toxicity of Li+ to plants and maintaining intracellular ion homeostasis.

Key words: maize, ZmNHX7, antiporter, ion toxicity

表1

引物序列"

引物用途Purpose of primer 引物名称Primer name 引物序列Primer sequence (5'-3')
扩增基因引物 ZmNHX7-G-F1 ATGGGCGGCGAGGCTGAGCC
Amplified gene primer sequences ZmNHX7-G-R1 CTACTGCTCCTGGGGCGGAG
ZmNHX7-G-F2 GCTGTGGTTGCACTGCTAAA
ZmNHX7-G-R2 TGCAATAACAACCCCACTCA
AtNHX8-G-F TTCCGTACACCGTCGTTCT
AtNHX8-G-R CCCCATCAATTAACGTGGTC
At-actin-F GCCAATCCGGTGCTGGTAACA
At-actin-R CATACCAGATCCAGTTCCTCCTCCC
荧光定量PCR引物序列 ZmNHX7-Q-F TGGGTTGGACTTGAAAGAGG
RT-PCR primer sequences ZmNHX7-Q-R AACACAATGCCACCAGTGAA
GAPDH-F AGGATATCAAGAAAGCTATTAAGGC
GAPDH-R GTAGCCCCACTCGTTGTCG
基因亚细胞定位 ZmNHX7-L-F AGCAGGCTTTGACTTTATGGGCGGCGAGGCTGAGCCTGACA
Subcellular localization of gene ZmNHX7-L-R TGGGTCTAGAGACTTTCTACTGCTCCTGGGGCGGAGGCACG

表2

玉米NHX基因信息"

基因名称
Gene name
基因序列号
Gene ID
CDS序列长度
CDS sequence length (bp)
ZmNHX1 GRMZM2G037342 1641
ZmNHX2 GRMZM2G063492 1641
ZmNHX3 GRMZM2G118019 1593
ZmNHX4 GRMZM2G027851 1620
ZmNHX5 GRMZM2G090149 1620
ZmNHX6 GRMZM2G067747 1611
ZmNHX7 GRMZM2G098494 3411

图1

拟南芥、玉米NHX家族进化树(A)及ZmNHX7分支的蛋白结构(B)"

图2

荧光定量PCR分析ZmNHX7基因在玉米不同组织中的表达 V1: 玉米第1片叶完全展开; V7: 玉米第7片叶完全展开; R2: 籽粒建成。误差线表示3次生物学重复的标准差, 以基因V1时期根的相对表达水平为对照。"

图3

ZmNHX7基因的诱导表达情况 A: ZmNHX7基因在不同浓度LiCl处理5 h后的表达量分析; B: ZmNHX7基因在不同浓度NaCl处理5 h后的表达量分析。误差线代表3个独立重复的标准差, *和**分别表示不同浓度离子胁迫条件下ZmNHX7基因相对表达量与对照在P < 0.05和P < 0.01水平差异显著。"

图4

ZmNHX7的亚细胞定位 A: YFP空载在烟草叶片中的表达; B: ZmNHX7-YFP在烟草叶片中的表达; C: 加上marker的ZmNHX7-YFP在烟草叶片中的表达。"

图5

通过PCR鉴定ZmNHX7基因在拟南芥中的转入与表达 A: RT-PCR检测AtNHX8基因在WT和nhx8中的转录表达; B: ZmNHX7基因在不同拟南芥株系中的表达; C: ZmNHX7基因在不同拟南芥株系中的转录表达。M: D2000 plus DNA marker。"

图6

拟南芥不同株系表型图及鲜重情况 A: WT、nhx8和COM1~COM4在含有0、5、15 mmol L-1 LiCl, 75 mmol L-1 NaCl的MS培养基上的生长表型图; B: WT、nhx8和COM1~COM4在含有离子胁迫的培养基上生长7 d后的鲜重情况(数据显示为平均值±SD, n = 20。图柱上不同大写字母表示在0.01水平上同一处理下的材料间差异显著)。"

图7

拟南芥根长及其数据统计 A: WT、nhx8、COM1和COM4在含有0、5、10 mmol L-1 LiCl, 50、100 mmol L-1 NaCl的MS培养基上的根长表型图; B: WT、nhx8、COM1、COM4在含有离子胁迫的培养基上生长7 d后的根长数据统计(数据显示为平均值±SD, n = 10。图柱上不同大写字母表示在0.01水平上同一处理下的材料间差异显著)。"

[1] Nublat A, Desplans J, Casse F, Berthomieu P. Sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell, 2001,13:125-137.
doi: 10.1105/tpc.13.1.125 pmid: 11158534
[2] 安瑞. 拟南芥AtNHX8基因的克隆及其功能研究. 中国农业大学博士学位论文, 北京, 2006.
An R. Cloning and Functional Analysis of Arabidopsis AtNHX8 Gene. PhD Dissertation of China Agricultural University, Beijing, China, 2006 (in Chinese with English abstract).
[3] Laurence K, Jerome K, Guiomar G C, Andrew L, John C. Induced plant accumulation of lithium. Geosciences, 2018,8:56-73.
[4] Kszos L A, Stewart A J. Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology, 2003,12:439-447.
pmid: 14649426
[5] Jiang L, Wang L, Zhang L, Tian C. Tolerance and accumulation of lithium in Apocynum pictum Schrenk. Peer J, 2018,6:e5559.
pmid: 30186702
[6] Apse M P, Aharon G S, Snedden W A, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999,285:1256-1258.
doi: 10.1126/science.285.5431.1256 pmid: 10455050
[7] Kumar S, Kalita A, Srivastava R, Sahoo L. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front Plant Sci, 2017,8:1896.
pmid: 29163616
[8] 卜华虎. 玉米Na+/H+质子泵ZmNHX1功能的初步研究 中央民族大学硕士学位论文, 北京, 2011.
Bu H H. Preliminary Study on the Function of Maize Na+/H+ Proton Pump ZmNHX1 MS Thesis of Minzu University of China, Beijing, China, 2011 (in Chinese with English abstract).
[9] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta, 1999,1446:149-155.
doi: 10.1016/s0167-4781(99)00065-2 pmid: 10395929
[10] Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol, 2004,45:146-59.
pmid: 14988485
[11] 徐璐, 郭善利, 尹海波. Na+/H+逆向转运蛋白与植物耐盐性研究. 湖北农业科学, 2016,55:2727-2730.
Xu L, Guo S L, Yin H B. The Na+/ H+ antiporter and its relation to salt tolerance in plants. Hubei Agric Sci, 2016,55:2727-2730 (in Chinese with English abstract).
[12] 马清, 包爱科, 伍国强, 王锁民. 质膜Na+/H+逆向转运蛋白与植物耐盐性. 植物学报, 2011,46:206-215
Ma Q, Bao A K, Wu G Q, Wang S M. Plasma membrane Na+/H+ antiporter is involved in plant salt tolerance. Chin Bull Bot, 2011,46:206-215 (in Chinese with English abstract).
[13] Shi H, Ishitani M, Kim C, Zhu J K. Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000,97:6896-6901.
doi: 10.1073/pnas.120170197 pmid: 10823923
[14] An R, Chen Q J, Chai M F, Lu P L, Su Z, Qin Z X, Chen J, Wang X C. AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J, 2010,49:718-728.
doi: 10.1111/j.1365-313X.2006.02990.x pmid: 17270011
[15] 沈丹丹, 程文, 王志武, 卢增斌, 赵苏娴, 丁照华, 张恩盈. 我国玉米耐盐种质研究现状与展望. 山东农业科学, 2018,50(11):163-167.
Shen D D, Cheng W, Wang Z W, Lu Z B, Zhao S X, Ding Z H, Zhang E Y. Research advances and prospects of salt tolerant maize germplasms in China. Shandong Agric Sci, 2018,50(11):163-167 (in Chinese with English abstract).
[16] 许静, 单亚楠, 何豆, 陈淞渝, 庄炜, 王爱荣. 甘蓝型油菜SNARE蛋白SYP122叶片瞬时表达体系的建立. 福建农林大学学报(自然科学版), 2019,48:459-465.
Xu J, Shan Y N, He D, Chen S Y, Zhuang W, Wang A R. Establishment of transient expression system of SNARE protein SYP122 in Brassica napus leaves. J Fujian Agric & For Univ(Nat Sci Edn), 2019,48:459-465 (in Chinese with English abstract).
[17] 李磊, 杨远柱, 刘泓, 杜长青, 林建中, 朱咏华, 刘选明. 金针菇谷氨酸脱氢酶基因的克隆及原核表达. 生命科学研究, 2013,17:230-237.
Li L, Yang Y Z, Liu H, Du C Q, Lin J Z, Zhu Y H, Liu X M. Cloning of a glutamate dehydrogenase gene from Flammulina velutipes and prokaryotic expression. Life Sci Res, 2013,17:230-237 (in Chinese with English abstract).
[18] 高凯. NJ进化树构建方法的改进及其应用. 北京工业大学硕士学位论文, 北京, 2008.
Gao K. Improvement and Application of Neighbor-Joining Method for Phylogenetic Tree Reconstruction. MS Thesis of Beijing University of Technology, Beijing, China, 2008 (in Chinese with English abstract).
[19] Higgins D G, Thompson J D, Gibson T J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol, 1996,266:383-402.
doi: 10.1016/s0076-6879(96)66024-8 pmid: 8743695
[20] Attitalla I H. Modified CTAB method for high quality genomic DNA extraction from medicinal plants. Pakistan J Biol Sci, 2011,14:998-999.
[21] 杨明峰, 韩宁, 陈敏, 王宝山. 植物盐胁迫响应基因表达的器官组织特异性. 植物生理学通讯, 2002,38:394-398.
Yang M F, Han N, Chen M, Wang B S. Organ tissue specificity of plant salt stress response gene expression. Plant Physiol J, 2002,38:394-398.
[22] Zhao W T, Feng S J, Li H, Faust F, Kleine T, Li L N, Yang Z M. Salt stress-induced FERROCHELATASE 1 improves resistance to salt stress by limiting sodium accumulation in Arabidopsis thaliana. Sci Rep, 2017,7:14737.
doi: 10.1038/s41598-017-13593-9 pmid: 29116128
[23] Earley K W, Haag J R, Pontes O, Opper K, Juehne T, Song K, Pikaard C S. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2006,45:616-629.
pmid: 16441352
[24] Batistic O, Sorek N, Schültke S, Yalovsky S, Kudla J. Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell, 2008,20:1346-1362.
doi: 10.1105/tpc.108.058123 pmid: 18502848
[25] 许青松, 赵佳, 魏运民, 韩蓉蓉, 刘卢生, 蒋曹德, 玉永雄. 紫花苜蓿MsOXO基因的克隆及表达分析. 浙江农业学报, 2019,31:11-19.
Xu Q S, Zhao J, Wei Y M, Han R R, Liu L S, Jiang C D, Yu Y X. Cloning and expression analysis of oxalate oxidase gene MsOXO from Medicago sativa. Acta Agric Zhejiangensis, 2019,31:11-19 (in Chinese with English abstract).
[26] Zhang F, Li L, Jiao Z, Chen Y, Liu H, Chen X, Fu J, Wang G, Zheng J. Characterization of the Calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Sci, 2016,253:118-129.
doi: 10.1016/j.plantsci.2016.09.011 pmid: 27968980
[27] 蔡晓锋, 胡体旭, 叶杰, 张余洋, 李汉霞, 叶志彪. 植物盐胁迫抗性的分子机制研究进展. 华中农业大学学报, 2015,34(3):134-141.
Cai X F, Hu T X, Ye J, Zhang Y Y, Li H X, Ye Z B. Molecular mechanisms of salinity tolerance in plants. J Huazhong Agric Univ, 2015,34(3):134-141 (in Chinese with English abstract).
[28] Hawrylak N B, Kalinowska M, Szymańska M. A study on selected physiological parameters of plants grown under lithium supplementation. Biol Trace Element Res, 2012,149:425-430.
[29] Harwood A J. Lithium and bipolar mood disorder: the inositol-depletion hypothesis revisited. Mol Psychiatr, 2005,10:117-126.
[30] Bakhat H F, Rasul K, Farooq A B U, Zia Z, Natasha, Fahad S, Abbas S, Shah G M, Rabbani F, Hammad H M. Growth and physiological response of spinach to various lithium concentrations in soil. Environ Sci Pollut Res Int, 2019,11:1-9.
doi: 10.1007/BF02980278 pmid: 15005132
[31] 李晓院, 解莉楠. 盐胁迫下植物Na+调节机制的研究进展. 生物技术通报, 2019,35(7):148-155.
Li X Y, Xie L N. Research progress in Na+ regulation mechanism of plants under salt stress. Biotechnol Bull, 2019,35(7):148-155 (in Chinese with English abstract).
[32] Bartolo M E, Carter J V. Lithium decreases cold-induced microtubule depolymerization in mesophyll cells of spinach. Plant Physiol, 1992,99:1716-1718.
doi: 10.1104/pp.99.4.1716 pmid: 16669100
[33] Jurkowska H, Rogoz A, Wojciechowicz T. Comparison of lithiumtoxic influence on some cultivars of oats, maize and spinach. Acta Agrar Silv Ser Silv, 2018 36:37-42.
[34] Mulkey T J. Alteration of growth and gravitropic response of maize roots by lithium. Gravit Space Biol Bull, 2005,18:119-120.
pmid: 16044636
[35] Kabata P A, Mukherjee A B. Trace Elements from Soil to Human. Berlin: Environmental Chemistry Press, 2007. pp 9-38.
[36] 赵祥强. 玉米Na+/H+逆向转运蛋白基因ZmSOS1的克隆与鉴定. 安徽农业科学, 2009,37:17843-17848.
Zhao X Q. Cloning and identification of a new Na+/H+ antiporter gene ZmSOS1 in maize. J Anhui Agric Sci, 2009,37:17843-17848 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!