欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (1): 61-70.doi: 10.3724/SP.J.1006.2021.02030

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻萌发耐淹性种质资源筛选及QTL定位

孙志广(), 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇*()   

  1. 连云港市农业科学院 / 江苏省现代作物生产协同创新中心, 江苏连云港 222006
  • 收稿日期:2020-04-27 接受日期:2020-07-02 出版日期:2021-01-12 网络出版日期:2020-07-14
  • 通讯作者: 徐大勇
  • 作者简介:E-mail: zhiguangsun@126.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0100400);国家现代农业产业技术体系建设专项(CARS-01-61);江苏省农业重大品种创制(PZCZ201704);苏北科技专项(LYG-SZ201930);连云港市财政专项资金(QNJJ1801);连云港市财政专项资金(QNJJ1902);连云港市财政专项资金(QNJJ2001)

Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.)

SUN Zhi-Guang(), WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong*()   

  1. Lianyungang Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Corp Production, Lianyungang 222006, Jiangsu, China
  • Received:2020-04-27 Accepted:2020-07-02 Published:2021-01-12 Published online:2020-07-14
  • Contact: XU Da-Yong
  • Supported by:
    National Key Research and Development Program of China(2017YFD0100400);China Agriculture Research System(CARS-01-61);Project for Agricultural Significant New Varieties Breeding of Jiangsu Province(PZCZ201704);Special Project of Science and Technology in Northern Jiangsu Province(LYG-SZ201930);Financial Grant Support Program of Lianyungang City(QNJJ1801);Financial Grant Support Program of Lianyungang City(QNJJ1902);Financial Grant Support Program of Lianyungang City(QNJJ2001)

摘要:

萌发耐淹性种质资源的筛选、耐低氧萌发基因的挖掘和利用是选育适宜直播水稻新品种的基础。为简便、高效的评价种质资源的萌发耐淹性, 本研究对来自不同年代和地区的191份粳稻种质资源进行了萌发耐淹性鉴定, 共获得12份萌发耐淹性强的种质资源, 其中连粳15号表现出较强的低氧萌发能力。利用其与籼稻品种黄莉占构建的F2:3分离群体, 采用模拟大田的鉴定方法, 在水稻1号、3号、9号、10号染色体上共检测到4个QTL, 即qGS1qGS3qGS9qGS10。共解释表型变异的70.9%, 其中qGS1qGS3qGS10, 能够被重复检测到, 贡献率分别为19.2%~24.0%、12.6%~14.7%、19.1%~20.5%, 是稳定表达的QTL位点。这些种质资源和QTL的发现为耐低氧发芽水稻新品种的培育提供了重要的亲本资源、基因资源和标记资源, 同时也为选育优良直播稻品种提供了理论依据。

关键词: 水稻, 萌发耐淹性, 种质资源, 数量性状位点

Abstract:

Screening of germplasm resources, exploiting and utilization of genes conferring tolerance to hypoxia are the key to breeding new cultivars adapted to direct seeding. In order to evaluate the germinability of germplasm resources under submerged condition in a simple and efficient way, 191 japonica germplasm resources released from different years and regions were screened, 12 japonica varieties with high germinability under submerged condition were found. Among them, Lianjing 15, a japonica variety, showed stable and high tolerance to hypoxia. Using a F2:3 population derived from Lianjing 15 and Huanglizhan (HLZ, a highly susceptible indica rice variety), four quantitative trait loci (QTL) conferring tolerance to hypoxia, namely qGS1, qGS3, qGS9, and qGS10 were identified under simulated field environment, and they explained 70.9% of the total phenotypic variation. Among them, qGS1, qGS3, and qGS10, were repeatedly detected in different years, accounting for 19.2%-24.0%, 12.6%-14.7%, and 19.1%-20.5% of the total phenotypic variation, respectively. The germplasm resources and QTL found in our study would provide innovative resources for breeding rice cultivars with high germinability under submerged condition, and would also provide a theoretical basis for breeding varieties adapted to direct seeding.

Key words: rice, germinability under submerged condition (GS), germplasm resources, quantitative trait loci (QTL)

附表1

191份种质资源的萌发耐淹性表现"

编号
Number
品种名称
Cultivar
胚芽鞘长
Coleoptile length (mm)
编号
Number
品种名称
Cultivar
胚芽鞘长
Coleoptile length (mm)
1 早丰11号Zaofeng 11 0 97 扬农粳2号Yangnongjing 2
2 镇稻1号Zhendao 1 0 98 粳系103 Jingxi 103 24.6
3 早粳Zaojing 0 99 台东育30 Taidongyu 30 24.6
4 梧桐Wutong 0 100 盐粳11号Yanjing 11 24.7
5 ITA182 0 101 扬粳4038 Yangjing 4038 24.7
6 临稻10号Lindao 10 13.4 102 ZBS622 24.7
7 华粳4号Huajing 4 13.6 103 盐粳30192 Yanjing 30192 24.7
8 HP3 17.2 104 盐稻15 Yandao 15 24.8
9 丹东陆稻Dandongludao 17.7 105 小黄稻Xiaohuangdao 24.8
10 绍糯9714 Shaonuo9714 17.7 106 武运粳8号Wuyunjing 8 24.8
11 南京11号 Nanjing 11 18.5 107 ZBS665 24.8
12 淮稻13号Huaidao 13 18.7 108 泗稻10号Sidao 10 24.8
13 三光稻Sanguangdao 18.8 109 香糯8333 Xiangnuo 8333 24.9
14 盐稻10号Yandao 10 19.0 110 湖粳75 Hujing 75 25.0
15 凤凰稻Fenghuangdao 19.1 111 畚禾Benhe 25.0
16 矮粳10号 Aijing 10 19.2 112 新宁Xinning 25.2
17 旱糯谷Hannuogu 19.3 113 南粳40 Nanjing 40 25.2
18 武运粳7号Wuyunjing 7 19.5 114 临稻18 Lindao 18 25.2
19 冀粳14 Jijing 14 19.9 115 高雄育122 Gaoxiongyu 122 25.2
20 南粳36 Nanjing 36 20.1 116 农虎早Laohuzao 25.3
21 黄枝糯Huangzhinuo 20.2 117 连粳3号Lianjing 3 25.4
22 垦鉴稻10号Kenjiandao 10 20.3 118 DY158 25.4
23 台东陆稻328
Taidongludao 328
20.8 119 中粳区6号Zhongjingqu 6 25.5
24 淮稻11号Huaidao 11 20.8 120 盐粳4号Yanjing 4 25.5
25 南粳37 Nanjing 37 20.9 121 镇稻18 Zhendao 18 25.5
26 小黄早Xiaohuangzao 20.9 122 越粳618 Yuejing 618 25.6
27 Y136 20.9 123 淮糯12 Huainuo 12 25.6
28 扬粳9538 Yangjing 9538 21.0 124 镇稻88 Zhendao 88 25.6
29 扬粳687 Yangjing 687 21.1 125 秀水21 Xiushui 21 25.7
30 武育粳20号Wuyujing 20 21.2 126 南粳43 Nanjing 43 25.9
31 通科粳Tongkejing 21.2 127 C418 25.9
32 小葱稻Xiaocongdao 21.3 128 盐粳6号Yanjing 6 25.9
33 圣稻13 Shengdao 13 21.3 129 镇稻86 Zhendao 86 26.0
34 盐粳9号Yanjing 9 21.3 130 台东育66 Taidongyu 66 26.0
35 连粳8671 Lianjing8671 21.4 131 锅底黑Guodihei 26.1
36 农林8号Nonglin 8 21.5 132 中粳区5号 Zhongjingqu 5 26.1
37 武育糯16号Wuyunuo 16 21.5 133 苏粳2号Sujing 2 26.1
38 京越1号Jingyue 1 21.6 134 桂花球Guihuaqiu 26.2
39 新稻18 Xindao 18 21.7 135 连粳3号选系 Line of Lianjing 3 26.2
40 矮秆黄Aiganhuang 21.8 136 黄谷粳稻Huanggujingdao 26.2
41 香稻Xiangdao 21.9 137 连粳5号Lianjing 5 26.3
42 迟粳预1号Chijingyu 1 22.0 138 华粳3号Huajing 3 26.3
43 葫芦稻Huludao 22.1 139 桂花黄Guihuahuang 26.4
44 双城糯Shuangchengnuo 22.1 140 新粳1号Xinjing 1 26.4
45 苏州选271 Suzhouxuan 271 22.1 141 白壳糯 1 Baikenuo 1 26.5
46 武糯5系Wunuo 5 22.3 142 盐粳5号Yanjing 5 26.5
47 中粳区7 Zhongjingqu 7 22.3 143 连粳2号Lianjing 2 26.5
48 黄粘粳Huangzhanjing 22.4 144 DY162 26.6
49 苏联种Sulianzhong 22.4 145 淮稻8号Huaidao 8 26.7
50 HR539 22.6 146 临稻4号Lindao 4 26.7
51 作作稻Zuozuodao 22.7 147 淮优粳2号Huaiyoujing 2 26.8
52 早熟香Zaoshuxiang 22.7 148 连粳6号Lianjing 6 26.9
53 盐稻7号Yanjing 7 22.7 149 徐稻3号Xudao 3 27.0
54 盐粳10号Yanjing 10 22.8 150 江北糯1号Jiangbeinuo 1 27.1
55 国优5号Guoyou 5 22.8 151 Kinmaze 27.3
56 L12-3 22.9 152 郑稻18 Zhengdao 18 27.3
57 浙粳61 Zhejing 61 22.9 153 镇稻108 Zhendao 108 27.4
58 武香粳1号Wuxiangjing 1 22.9 154 剑粳6号Jianjing 6 27.4
59 盐粳30237 Yanjing 30237 22.9 155 扬辐粳8号Yangfujing 8 27.5
60 HP5 23.0 156 扬糯2号Yangnuo 2 27.5
61 红壳糯Hongkenuo 23.0 157 R0380 27.5
62 辽粳287 Liaojing 287 23.1 158 DY110 27.7
63 武育粳18号Wuyujing 18 23.3 159 扬粳1号Yangjing 1 27.8
64 南粳46 Nanjing 46 23.3 160 淮稻9号Huaidao 9 27.9
65 扬粳4227 Yangjing 4227 23.3 161 盐稻8号Yandao 8 28.0
66 L1346 23.3 162 淮稻7号Huaidao 7 28.0
67 盐粳16 Yanjing 16 23.4 163 苏香粳2号Suxiangjing 2 28.1
68 连16783 Lian 16783 23.4 164 泗稻12号Sidao 12 28.1
69 ZBS152 23.5 165 早丰9号Zaofeng 9 28.2
70 L168-3 23.5 166 盐粳2号Yanjing 2 28.6
71 浙粳66 Zhejing 66 23.5 167 武粳15 Wujing 15 28.6
72 淮稻2号Huaidao 2 23.6 168 9805.0 28.7
73 南粳44 Nanjing 44 23.6 169 徐稻5号Xudao 5 28.8
74 东道Dongdao 23.7 170 徐稻6号Xudao 6 28.9
75 HN363 23.7 171 镇稻2号Zhendao 2 28.9
76 常农粳4号Changnongjing 4 23.8 172 南粳41 Nanjing 41 29.0
77 秀水04 Xiushui 04 23.9 173 宁粳1号Ningjing 1 29.1
78 中粳区8号 Zhongjingqu 8 24.0 174 武运粳11号Wuyunjing 11 29.3
79 武育粳3号Wuyujing 3 24.0 175 临糯Linnuo 29.3
80 ZBS153 24.0 176 华粳6号Huajing 6 29.4
81 小香稻Xiaoxiangdao 24.0 177 连粳4号Lianjing 4 29.5
82 新稻10号Xindao 10 24.1 178 盐稻9号Yandao 9 29.8
83 吾别Wubie 24.1 179 镇稻99 Zhendao 99 29.8
84 矮城804 Aicheng 804 24.2 180 临稻11号Lindao 11 30.1
85 花糯Huanuo 24.2 181 淮稻6号Huaidao 6 30.4
86 奎稻Kuidao 24.2 182 华粳5号Huajing 5 30.5
87 盐稻6号Yandao 6 24.4 183 扬粳186 Yangjing 186 30.7
88 宁粳3号Ningjing 3 24.4 184 徐稻4号Xudao 4 30.9
89 武育粳7号Wuyujing 7 24.4 185 淮稻10号Huaidao 10 31.1
90 宁粳2号Ningjing 2 24.4 186 连粳7号Lianjing 7 31.1
91 武运粳21 Wuyunjing 21 24.5 187 连粳9号Lianjing 9 32.0
92 武香粳14 Wuxiangjing 14 24.5 188 盐粳7号Yanjing 7 32.2
93 盐糯12 Yannuo 12 24.5 189 南粳45 Nanjing 45 32.5
94 昆稻选7号Kundaoxuan 7 24.5 190 连粳15号Lianjing 15 34.2
95 农虎禾-3 Nonghuhe-3 24.5 191 穞稻Ludao 34.6
96 五优稻1号Wuyoudao 1 24.5

图1

种质资源萌发耐淹性评价 A: 淹水条件下, 191份粳稻种质资源萌发耐淹性表型分布直方图; B: 淹水条件下, 不同年代种质资源胚芽鞘长度比较分析。"

表1

12份萌发耐淹性强的种质资源"

编号
Number
品种名称
Cultivar
胚芽鞘长度
Coleoptile length (mm)
编号
Number
品种名称
Cultivar
胚芽鞘长度
Coleoptile length (mm)
1 穞稻 Ludao 34.6 7 淮稻10号 Huaidao 10 31.1
2 连粳15号 Lianjing 15 34.2 8 徐稻4号 Xudao 4 30.9
3 南粳45 Nanjing 45 32.5 9 扬粳186 Yangjing 186 30.7
4 盐粳7号 Yanjing 7 32.2 10 华粳5号 Huajing 5 30.5
5 连粳9号 Lianjing 9 32.0 11 淮稻6号 Huaidao 6 30.4
6 连粳7号 Lianjing 7 31.1 12 临稻11号 Lindao 11 30.1

图2

连粳15号和黄莉占的萌发耐淹性表现 A: 在淹水条件下, 连粳15号与黄莉占胚芽鞘长表型图; B: 在淹水条件下, 连粳15号与黄莉占的平均胚芽鞘长; C: 连粳15号与黄莉占在不同淹水深度条件下的胚芽鞘长度比较分析。"

图3

连粳15号/黄莉占F2:3群体萌发耐淹性表型分布直方图 A: 2018年; B: 2019年。"

表2

连粳15号/黄莉占F2:3群体中检测到的萌发耐淹性QTL"

年份
Year
数量性状位点
QTL
染色体
Chr.
标记区间
Marker interval
LOD值
LOD scores
贡献率
PVE (%)
加性效应
Additive effect
2018 qGS1 1 RM11307-RM7341 6.7 24.0 -0.53
qGS3 3 RM15280-RM7134 3.6 14.7 -0.43
qGS9 9 RM24085-RM24271 3.3 11.7 -0.32
qGS10 10 RM474-RM6404 6.1 20.5 -0.50
2019 qGS1 1 RM11307-RM7341 5.1 19.2 -0.49
qGS3 3 RM15280-RM7134 3.0 12.6 -0.41
qGS10 10 RM474-RM6404 5.6 19.1 -0.50

图4

连粳15号/黄莉占F2:3群体中检测到的萌发耐淹性QTL 染色体右边是分子标记名称, 左边是遗传距离(cM)。"

[1] Mahajan G, Chauhan B S. Performance of dry direct-seeded rice in response to genotype and seeding rate. Agron J, 2016,108:257-265.
[2] 孙平勇, 李魏, 潘素君, 彭伟业, 戴良英. 水稻品种魔王谷粒形、剑叶性状和株高QTL定位. 作物学报, 2018,44:1673-1680.
Sun P Y, Li W, Pan S J, Peng W Y, Dai L Y. Mapping QTLs for grain Shape, flag leaf traits, and plant height in rice variety Mowanggu. Acta Agron Sin, 2018,44:1673-1680 (in Chinese with English abstract).
[3] 张平, 姜一梅, 曹鹏辉, 张福鳞, 伍洪铭, 蔡梦颖, 刘世家, 田云录, 江玲, 万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9Kas转入宁粳4号提高其种子贮藏能力. 作物学报, 2019,45:335-343.
Zhang P, Jiang Y M, Cao P H, Zhang F L, Wu H M, Cai M Y, Liu S J, Tian Y L, Jiang L, Wan J M. Introducing qSS-9Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability. Acta Agron Sin, 2019,45:335-343 (in Chinese with English abstract).
[4] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009,12:3-8.
[5] Farooq M, Siddique K H M, Rehman H, Aziz T, Lee D J, Wahid A. Rice direct seeding: experiences, challenges and opportunities. Soil Tillage Res, 2011,111:87-98.
[6] Kumar V, Ladha J K. Direct seeding of rice: recent developments and future research needs. Adv Agron, 2011,111:297-413.
[7] Ghosh D, Singh U P, Brahmachari K, Singh N K, Das A. An integrated approach to weed management practices in direct-seeded rice under zero-tilled rice-wheat cropping system. Int J Pest Manage, 2017,63:37-46.
[8] Liu H Y, Hussain S, Zheng M M, Peng S B, Huang J L, Cui K H, Nie L X. Dry direct-seeded rice as an alternative to transplanted-flooded rice in central China. Agron Sustain Dev, 2015,35:285-294.
doi: 10.1007/s13593-014-0239-0
[9] Tao Y, Chen Q, Peng S B, Wang W Q, Nie L X. Lower global warming potential and higher yield of wet direct-seeded rice in central China. Agron Sustain Dev, 2016,36(2):24-32.
[10] 赵霞, 杜朝云, 徐春梅, 杨华伟, 吕泽林, 章秀福. 水稻对低氧环境的适应及其机制研究进展. 作物杂志, 2015, (3):5-12.
Zhao X, Du C Y, Xu C M, Yang H W, Lyu Z L, Zhang X F. Research advances on the rice adaptation to hypoxia environment and its mechanism. Crops, 2015, (3):5-12 (in Chinese).
[11] 侯名语, 江玲, 王春明, 万建民. 水稻种子低氧发芽力的QTL定位和上位性分析. 中国水稻科学, 2004,18:483-488.
Hou M Y, Jiang L, Wang C M, Wan J M. Quantitative trait loci and epistatic analysis for seed anoxia germinability in rice (Oryza sativa). Chin J Rice Sci, 2004,18:483-488 (in Chinese with English abstract).
[12] Magneschi L, Kudahettige R L, Alpi A, Perata P. Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression. Plant Biol, 2009,11:561-573.
doi: 10.1111/j.1438-8677.2008.00150.x pmid: 19538394
[13] 曹栋栋, 阮晓丽, 詹艳, 石瑛琪. 杂交水稻种子不同活力测定方法与其田间成苗率的相关性. 浙江农业学报, 2014,26:1145-1150.
Cao D D, Ruan X L, Zhan Y, Shi Y Q. Relativity analysis between seedling percentage in field and different seed vigor testing methods of hybrid rice seeds. Acta Agric Zhejiangensis, 2014,26:1145-1150 (in Chinese with English abstract).
[14] 孙凯, 李冬秀, 杨靖, 董骥驰, 严贤诚, 罗立新, 刘永柱, 肖武名, 王慧, 陈志强, 郭涛. 水稻耐淹成苗率相关性状全基因组的关联分析. 中国农业科学, 2019,52:385-398.
Sun K, Li D X, Yang J, Dong J C, Yan X C, Luo L X, Liu Y Z, Xiao W M, Wang H, Chen Z Q, Guo T. Genome-wide association analysis for rice submergence seedling rate. Sci Agric Sin, 2019,52:385-398 (in Chinese with English abstract).
[15] 陈孙禄, 王俊敏, 潘佑找, 马健阳, 张建辉, 张红生, 滕胜. 水稻萌发耐淹性的遗传分析. 植物学报, 2012,47:28-35.
Chen S L, Wang J M, Pan Y Z, Ma J Y, Zhang J H, Zhang H S, Teng S. Genetic analysis of rice germination tolerance to flooding. Chin Bull Bot, 2012,47:28-35 (in Chinese).
[16] Jiang L, Liu S J, Hou M Y, Tang J Y, Chen L M, Zhai H Q, Wan J M. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res, 2006,98:68-75.
[17] 胡涛, 宋佳瑜, 吴爱婷, 刘思彤, 郭志富, 姜秀娟, 高继平, 赵明辉, 黎毛毛. 东乡野生稻低温发芽力QTL定位及超级稻耐冷改良. 植物遗传资源学报, 2018,19:627-632.
Hu T, Song J Y, Wu A T, Liu S T, Guo Z F, Jiang X J, Gao J P, Zhao M H, Li M M. QTLs mapping for low temperature germinability in a population of Dongxiang wild rice (Oryza rufipogon Griff.) and super rice variety. J Plant Genet Res, 2018,19:627-632 (in Chinese with English abstract).
[18] Junichi K, Koji H, Yutaka J. Rice (Oryza sativa L.) germplasm with better seedling emergence under direct sowing in flooded paddy field. Plant Genet Resour-C, 2018,16:1-7.
[19] Yamauchi M, Aguilar A M, Vaughan D A, Seshu D V. Rice (Oryza sativa L.) germplasm suitable for direct sowing under flooded soil surface. Euphytica, 1993,67:177-184.
[20] Yamauchi M, Biswas J K. Rice cultivar difference in seedling establishment in flooded soil. Plant Soil, 1997,189:145-153.
[21] 刘艳, 宋兆强, 夏祥华, 王宝祥, 周振玲, 卢百关, 李健, 秦德荣, 徐大勇. 大田模拟环境下水稻种子耐缺氧能力遗传研究. 西南农业学报, 2016,29:2279-2283.
Liu Y, Song Z Q, Xia X H, Wang B X, Zhou Z L, Lu B G, Li J, Qin D R, Xu D Y. Genetic variation of seed tolerance to anoxia amog rice (Oryza saliva L.). Southwest China J Agric Sci, 2016,29:2279-2283 (in Chinese with English abstract).
[22] 王洋, 王盈盈, 洪德林. 太湖流域水稻种子活力和耐缺氧能力遗传变异研究. 南京农业大学学报, 2009,32(3):1-7.
Wang Y, Wang Y Y, Hong D L. Genetic variation of seed vigor and tolerance to anoxia among rice (Oryza sativa L.) varieties in Taihu Lake region. J Nanjing Agric Univ, 2009,32(3):1-7 (in Chinese with English abstract).
[23] 张光恒, 曾大力, 胡时开, 苏岩, 阿加拉铁, 郭龙彪, 钱前. 水稻苗期耐淹相关性状QTL分析. 作物学报, 2006,32:20-26.
Zhang G H, Zeng D L, Hu S K, Su Y, A J L T, Guo L B, Qian Q. QTL analysis of traits concerned submergence tolerance at seedling stage in rice (Oryza sativa L.). Acta Agron Sin, 2006,32:20-26 (in Chinese with English abstract).
[24] 王洋, 郭媛, 洪德林. 水稻幼苗耐缺氧能力的QTL分析. 中国水稻科学, 2010,24:18-24.
Wang Y, Guo Y, Hong D L. QTL analysis of the anoxic tolerance at the seedling stage in rice. Chin J Rice Sci, 2010,24:18-24 (in Chinese with English abstract).
[25] Lee K W, Chen P W, Lu C A, Chen S, Ho T H D, Yu S M. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci Signal, 2009, 2: ra61.
doi: 10.1126/scisignal.2000333 pmid: 19809091
[26] Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, Mackill D J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006,442:705-708.
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[4] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[5] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[6] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!