欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 904-914.doi: 10.3724/SP.J.1006.2021.02050

• 耕作栽培·生理生化 • 上一篇    下一篇

长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析

刘秋员1,2(), 周磊1, 田晋钰1, 程爽1, 陶钰1, 邢志鹏1, 刘国栋1, 魏海燕1,*(), 张洪程1,*()   

  1. 1扬州大学江苏省作物遗传生理重点实验室 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
    2信阳农林学院农学院, 河南信阳 464000
  • 收稿日期:2020-07-20 接受日期:2020-11-13 出版日期:2021-05-12 网络出版日期:2020-12-15
  • 通讯作者: 魏海燕,张洪程
  • 作者简介:E-mail: joss85@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0300503);国家自然科学基金项目(31971841);国家现代农业产业技术体系建设专项(CARS-01-27);江苏省重点研发计划项目(BE2018355);江苏省农业产业技术体系专项(JATS[2018]298);江苏省作物遗传生理重点实验室开放课题(YCSL201907)

Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River

LIU Qiu-Yuan1,2(), ZHOU Lei1, TIAN Jin-Yu1, CHENG Shuang1, TAO Yu1, XING Zhi-Peng1, LIU Guo-Dong1, WEI Hai-Yan1,*(), ZHANG Hong-Cheng1,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Agricultural College, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
  • Received:2020-07-20 Accepted:2020-11-13 Published:2021-05-12 Published online:2020-12-15
  • Contact: WEI Hai-Yan,ZHANG Hong-Cheng
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300503);National Natural Science Foundation of China(31971841);China Agriculture Research System(CARS-01-27);Key Research Program of Jiangsu Province(BE2018355);Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2018]298);Open Program of Jiangsu Key Laboratory of Crop Genetics and Physiology(YCSL201907)

摘要:

于2017—2018年分别收集长江中下游地区90份和105份常规中熟粳稻品种(系)为材料, 研究各供试品种(系)的产量、稻米品质以及氮素吸收量, 对产量、品质、氮素吸收之间的相互关系进行系统分析, 以期探索长江中下游地区常规中熟粳稻产量、品质和氮素吸收协同提升途径。结果表明, 产量与千粒重、穗粒数呈极显著正相关, 与结实率呈负相关, 与有效穗数相关性不显著。穗粒数对产量的直接促进作用最大, 而有效穗数通过其他产量构成因素对产量形成的限制作用最大, 千粒重通过其他产量构成因素对产量形成的限制作用最小。总吸氮量与茎、叶、穗的干重均呈极显著正相关, 与茎、叶、穗含氮率相关性较弱, 增加茎、叶、穗的干重是增加氮素吸收量的有效途径。直链淀粉、蛋白质与稻米加工品质、外观品质以及稻米食味均存在显著的相关性, 降低直链淀粉和蛋白质含量, 有利于提升稻米食味品质, 但不利于加工品质和外观品质的改善。影响产量的关键指标千粒重、穗粒数与影响氮素吸收的关键指标茎干重、叶干重、穗干重均呈极显著正相关。直链淀粉与茎干重、叶干重、穗干重、千粒重以及穗粒数无显著相关性, 而蛋白质与茎干重、叶干重、穗干重、千粒重、穗粒数总体呈负相关。综上所述, 在直链淀粉淀粉含量相对较低的品种中, 选择生物量较大, 且穗粒数较多、千粒重较高的品种, 能够实现长江中下游地区常规中熟粳稻产量、氮素吸收以及食味品质的协同提升, 但这可能不利于加工以及外观品质的改善, 有待于进一步研究其中的平衡关系。

关键词: 产量, 氮素, 稻米品质, 粳稻

Abstract:

In 2017 and 2018, 90 and 105 inbred middle-ripe japonica rice varieties (lines) in the middle and lower reaches of Yangtze River were collected and planted in a unified way, and grain yield, rice quality and nitrogen uptake of each variety were measured at mature stage. The relationships among grain yield, rice quality and nitrogen uptake were analyzed, so as to clarify the coordinated improvement path of grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. The results indicated that grain yield was significantly positive correlated with spikelet per panicle and 1000-grain weight, and negatively correlated with percentage of filled grains. There was no significant correlation between grain yield and the number of effective panicles. Spikelet per panicle had the greatest direct path coefficient to grain yield, the number of effective panicles had the greatest limiting effect on yield formation through other yield components, and 1000-grain weight had the least limiting effect on yield formation through other yield components. The total nitrogen uptake was significantly positive correlated with the dry matter weight of stem, leaf and panicle. Path analysis showed that increasing biomass had a positive effect on increasing nitrogen uptake. Amylose and protein were significantly correlated with rice milling quality, appearance quality and taste value. Reducing amylose and protein content was beneficial to improve eating quality, but not conducive to the improvement of milling and appearance quality. The results of correlation analysis showed that there was a significant positive correlation between 1000-grain weight, spikelet per panicle, dry weight of stem, leaf and panicle. There was no significant correlation between dry weight of stem, leaf and panicle, 1000-grain weight, spikelet per panicle and amylose content, but they were significantly negatively correlated with protein content. To sum up, the selection of varieties with low amylose content among those with large biomass, suitable population spikelet and higher 1000-grain weight would be an effective way to realize the coordinated improvement of grain yield, nitrogen uptake and eating quality of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River. However, this may not be conducive to the improvement of milling and appearance quality and it needs to be further studied.

Key words: grain yield, nitrogen, rice quality, japonica

表1

供试品种(系)清单"

年度Year 品种(系) Variety (line)
2017 JD 6602, JD 6614, JD 6619, 常软07-1, 常软07-11, 常软07-2,常软07-3, 常软07-4, 常软07-5, 常软07-6, 丰粳1606, 沪香粳165, 沪早软粳, 沪早香软1号, 沪早香软2号, 华丰1502, 华粳295, 华粳5号, 华粳8号, 淮330, 淮稻5号, 连粳11号, 连粳12号, 连粳13, 连粳13264, 连粳15, 连粳15113, 连粳7号, 南繁1604, 南繁1605, 南繁1609, 南繁1610, 南粳2728, 南粳505, 南粳5711, 南粳5833, 南粳9108, 南粳3818, 南粳5718, 宁5720, 宁9003, 宁9022, 宁9039, 宁粳040, 宁粳4号, 宁粳7号, 圣稻1647, 圣稻18-15, 圣稻18-4, 圣稻19, 圣稻20, 圣稻22, 圣稻2620, 泗15-234, 泗15-301, 泗稻14-211, 泗稻15号, 松早香1号, 苏1795, 苏粳815, 苏香粳3号, 苏秀867, 泰粳1152, 泰粳2340, 皖垦粳3号, 武4610, 武6267, 武粳004, 武育粳3号, 武运5020, 武运5051, 武运粳21, 武运粳27号, 武运粳32号, 武运粳80, 新稻22, 新科稻31, 徐36618, 徐41368, 徐稻9号, 徐农33202, 盐粳16号, 扬粳1612, 扬粳239, 扬粳3012, 扬粳3491, 扬粳5515, 扬育粳2号, 镇9471, 镇稻99
JD6602, JD6614, JD6619, Changruan 07-1, Changruan 07-11, Changruan 07-2, Changruan 07-3, Changruan 07-4, Changruan 07-5, Changruan 07-6, Fengjing 1606, Huxiangjing 165, Huzaoruanjing, Huzaoxiangruan 1, Huzaoxiangruan 2, Huafeng 1502, Huajing 295, Huajing 5, Huajing 8, Huai 330, Huaidao 5, Lianjing 11, Liangjing 12, Liangjing 13, Lianjing 13264, Lianjing 15, Lianjing 15113, Liangjing 7, Nanfan 1604, Nanfan 1605, Nanfan 1609, Nanfan 1610, Nanjing 2728, Nanjing 505, Nanjing 5711, Nanjing 5833, Nanjing 9108, Nanjing 3818, Nanjing 5718, Ning 5720, Ning 9003, Ning 9022, Ning 9039, Ningjing 040, Ningjing 4, Ningjing 7, Shendao 1647, Shendao 18-15, Shendao 18-4, Shendao 19, Shendao 20, Shendao 22, Shendao 2620, Si 15-234, Si 15-301, Sidao 14-211, Sidao 15, Songzaoxiang 1, Su 1795, Sujing 815, Suxiangjing 3, Suxiu 867, Taijing 1152, Taijing 2340, Wankenjing 3, Wu 4610, Wu 6267, Wujing 004, Wuyujing 3, Wuyun 5020, Wuyun 5051, Wuyunjing 21, Wuyunjing 27, Wuyunjing 32, Wuyunjing 80, Xindao 22, Xinkedao 31, Xu 36618, Xu 41368, Xudao 9, Xunong 33202, Yanjing 16, Yangjing 1612, Yangjing 239, Yangjing 3012, Yangjing 3491, Yangjing 5515, Yangyujing 2, Zhendao 9471, Zhendao 99
2018 早香粳1号, 福粳1601, 福粳1608, 沪早香181, 宁9036, 申粳1221, 圣稻18, 圣稻23, 圣稻24, 圣香66, 苏1785, 武育粳36号, 武运4326, 徐40398, 徐稻10号
Zaoxiangjing 1, Fujing 1601, Fujing 1608, Huzaoxiang 181, Ning 9036, Shenjing 1221, Shendao 18, Shendao 23, Shendao 24, Shenxiang 66, Su 1785, Wuyujing 36, Wuyun 4326, Xu 40398, Xudao 10

表2

供试品种(系)稻米品质的变异"

指标
Trait
2017 2018
最小值 Minimum 最大值
Maximum
平均值
Mean
变异系数
CV (%)
最小值 Minimum 最大值
Maximum
平均值
Mean
变异系数
CV (%)
糙米率 BR (%) 82.00 86.58 85.52 0.93 83.43 86.75 85.28 0.90
精米率 MR (%) 67.50 78.10 73.97 2.70 63.74 75.54 70.09 3.65
整精米率 HR (%) 47.18 74.86 63.89 8.47 39.22 70.79 58.14 12.09
垩白粒率 CKR (%) 10.23 88.70 35.80 51.18 11.20 90.73 33.98 49.89
垩白大小 CA (%) 15.44 41.29 26.19 17.01 20.54 50.77 28.03 16.97
垩白度 CKD (%) 1.57 36.63 9.75 64.22 2.29 46.07 9.89 68.44
蛋白质 PC (%) 8.25 10.30 9.17 4.12 7.20 10.05 8.53 6.99
直链淀粉 AC (%) 6.59 20.13 14.07 28.74 7.35 19.98 14.60 27.54
食味值 Taste value 45.07 76.00 58.96 13.10 42.83 80.67 61.59 12.36

图1

供试品种(系)垩白度、整精米率和直链淀粉分布"

表3

稻米品质指标的简单相关及偏相关分析"

指标
Trait
糙米率
BR
精米率
MR
整精米率
HR
垩白粒率
CKR
垩白大小
CA
垩白度
CKD
蛋白质
PC
直链淀粉
AC
食味值 Taste value
SCC PCC
糙米率 BR 1 0.560** 0.057 0.160 0.183 0.167 0.083 0.082 0.072
精米率 MR 0.299** 1 -0.035 0.423** 0.158 0.364** 0.035 -0.389** 0.458**
整精米 HR -0.064 0.380** 1 -0.258* -0.081 -0.264* 0.330** 0.317** -0.335** -0.057
垩白粒率 CKR 0.184 0.025 -0.307* 1 0.461** 0.944** -0.205 -0.638** 0.498** 0.189
垩白大小 CA 0.026 -0.045 -0.013 0.444** 1 0.682** 0.171 -0.025 -0.096
垩白度 CKD 0.097 -0.016 -0.251** 0.932** 0.694** 1 -0.128 -0.530** 0.365** -0.208
蛋白质 PC 0.171 0.187 0.326** -0.005 0.310* 0.115 1 0.350** -0.571** -0.480**
直链淀粉 AC -0.060 -0.210* 0.300** -0.598** -0.224* -0.533** 0.165 1 -0.797** -0.668**
食味值
Taste value
SCC 0.009 0.079 -0.331** 0.435** -0.018 0.311** -0.661** -0.701** 1
PCC 0.128 0.173 -0.091 -0.758** -0.700**

表4

供试品种(系)产量及其构成因素"

指标
Trait
2017 2018
变幅
Range
平均值
Mean
变异系数CV (%) 变幅
Range
平均值
Mean
变异系数CV (%)
有效穗数
Number of effective panicles (×104 hm-2)
302.58-467.52 365.20 8.16 268.51-456.36 350.82 8.58
千粒重 1000-grain weight (g) 20.60-29.88 26.38 5.87 20.78-30.17 26.62 6.57
穗粒数 Spikelet per panicle 75.38-136.08 103.21 10.48 74.19-134.88 103.31 11.08
结实率 Percentage of filled grains (%) 82.43-95.77 89.43 3.39 86.84-98.56 94.60 2.62
产量 Grain yield (t hm-2) 6.80-9.89 8.42 8.11 6.82-10.28 8.58 8.49
收获指数 Harvest index 0.44-0.49 0.46 2.39 0.44-0.49 0.47 2.34

表5

产量与产量构成因素的相关及通径分析"

指标
Trait
简单相关系数
Simple
correlation
coefficient
直接通径
系数
Direct path coefficients
间接通径系数Indirect path coefficients 决策系数
Decision coefficient
有效穗数
Number of
effective panicles
千粒重
1000-grain weight
穗粒数
Spikelet per panicle
结实率
Percentage of filled grain
合计
Total
2017
有效穗数
Number of effective panicles
0.083 0.976 -0.163 -0.742 0.013 -0.893 -0.791
千粒重
1000-grain weight
0.287** 0.720 -0.222 -0.180 -0.032 -0.433 -0.105
穗粒数
Spikelet per panicle
0.538** 1.354 -0.535 -0.096 -0.184 -0.814 -0.376
结实率
Percentage of filled grains
-0.253** 0.398 0.031 -0.058 -0.626 -0.652 -0.360
2018
有效穗数
Number of effective panicles
0.002 0.968 -0.194 -0.790 0.018 -0.967 -0.933
千粒重
1000-grain weight
0.303** 0.752 -0.250 -0.242 0.042 -0.450 -0.110
穗粒数
Spikelet per panicle
0.549** 1.399 -0.547 -0.130 -0.173 -0.850 -0.421
结实率
Percentage of filled grains
-0.181 0.359 0.048 0.087 -0.676 -0.540 -0.259

表6

供试品种(系)干物质积累及氮素吸收"

指标
Trait
2017 2018
变幅
Range
平均值
Mean
变异系数CV (%) 变幅
Range
平均值
Mean
变异系数CV (%)
茎干重 SDM (t hm-2) 4.62-7.44 6.01 9.29 4.78-7.09 5.99 8.34
叶干重 LDM (t hm-2) 2.24-4.37 3.28 12.34 2.15-3.83 3.05 11.43
穗干重 PDM (t hm-2) 6.94-10.99 9.00 8.93 7.20-11.63 9.21 9.72
总干重 TDM (t hm-2) 14.56-21.25 18.29 7.89 14.77-21.23 18.25 7.94
茎含氮率 SNR (%) 0.80-1.19 1.02 8.94 0.71-1.18 0.94 9.64
叶含氮率 LNR (%) 1.33-1.86 1.59 8.50 1.09-1.65 1.39 7.92
穗含氮率 PNR (%) 1.24-1.56 1.36 4.66 1.06-1.50 1.28 6.32
茎吸氮量 SNC (kg hm-2) 43.92-84.95 61.50 12.71 37.94-73.85 55.97 11.60
叶吸氮量 LNC (kg hm-2) 36.62-70.98 52.00 12.57 25.96-58.01 42.33 13.61
穗吸氮量 PNC (kg hm-2) 89.19-149.51 121.92 8.60 89.37-144.78 117.32 9.73
总吸氮量 TNC (kg hm-2) 194.77-270.38 235.42 6.50 175.72-246.13 215.63 6.80

表7

总吸氮量与其构成因素相关及通径分析"

指标
Trait
简单相关系数
Simple correlation coefficient
直接通径系数
Direct path coefficients
间接通径系数 Indirect path coefficients 决策系数
Decision coefficient
茎干重
SDM
叶干重
LDM
穗干重
PDM
茎含氮率
SNR
叶含氮率
LNR
穗含氮率
PNR
合计
Total
2017
茎干重SDM 0.669** 0.382 0.159 0.376 -0.016 -0.094 -0.139 0.287 0.365
叶干重LDM 0.693** 0.428 0.142 0.327 0.052 -0.093 -0.164 0.265 0.410
穗干重PDM 0.803** 0.692 0.208 0.202 -0.042 -0.147 -0.110 0.111 0.632
茎含氮率SNR 0.214* 0.354 -0.017 0.063 -0.083 -0.006 -0.097 -0.140 0.026
叶含氮率LNR -0.342** 0.273 -0.132 -0.146 -0.373 -0.008 0.043 -0.615 -0.261
穗含氮率PNR -0.261* 0.358 -0.148 -0.196 -0.212 -0.096 0.033 -0.619 -0.315
2018
茎干重SDM 0.611** 0.312 0.202 0.294 -0.055 -0.029 -0.112 0.300 0.284
叶干重LDM 0.768** 0.353 0.178 0.444 0.026 -0.012 -0.221 0.415 0.418
穗干重PDM 0.811** 0.753 0.122 0.208 -0.055 -0.066 -0.151 0.059 0.654
茎含氮率SNR 0.059 0.356 -0.048 0.025 -0.117 0.040 -0.198 -0.297 -0.085
叶含氮率LNR -0.106 0.205 -0.044 -0.020 -0.241 0.069 -0.075 -0.311 -0.085
穗含氮率PNR -0.155 0.487 -0.072 -0.160 -0.233 -0.145 -0.031 -0.642 -0.388

表8

影响产量、氮素吸收及稻米品质的关键指标间的相关系数"

指标 茎干重
SDM
叶干重
LDM
穗干重
PDM
蛋白质
PC
直链淀粉
AC
千粒重
1000-grain weight
穗粒数
Spikelet per panicle
茎干重 SDM 1 0.371** 0.544** -0.190 0.013 0.258* 0.337**
叶干重 LDM 0.583** 1 0.473** -0.346** -0.002 0.276** 0.310**
穗干重 PDM 0.400** 0.590** 1 -0.144 -0.107 0.248* 0.484**
蛋白质 PC -0.227* -0.563** -0.358** 1 0.250* 0.044 -0.085
直链淀粉 AC 0.042 -0.026 -0.039 0.165 1 0.121 0.097
千粒重 1000-grain weight 0.366** 0.424** 0.212* -0.190 0.023 1 -0.133
穗粒数 Spikelet per panicle 0.280** 0.387** 0.544** -0.231* 0.144 -0.173 1
[1] 肖国樱, 肖友伦, 李锦江, 邓力华, 翁绿水, 孟秋成, 于江辉. 高效是当前水稻育种的主导目标. 中国水稻科学, 2019,33:287-292.
Xiao G Y, Xiao Y L, Li J J, Deng L H, Weng L S, Meng Q C, Yu J H. High efficiency is a dominant target for current rice breeding. Chin J Rice Sci, 2019,33:287-292 (in Chinese with English abstract).
[2] 张启发. 绿色超级稻培育的设想. 分子植物育种, 2005,3:601-602.
Zhang Q F. Strategies for developing green super rice. Mol Plant Breed, 2005,3:601-602 (in Chinese).
[3] Fitzgerald M A, McCouch S R, Hall R D. Not just a grain of rice: the request for quality. Trends Plant Sci, 2009,14:133-139.
[4] 张宏根, 朱国永, 封智蔷, 许明, 吉健安, 裴艳, 钱凯, 汤述翥, 顾铭洪. 近30年江苏省迟熟中粳品种产量与品质分析. 中国水稻科学, 2014,28:327-334.
Zhang H G, Zhu G Y, Feng Z Q, Xu M, Ji J A, Pei Y, Qian K, Tang S Z, Gu M H. Analysis on yield and quality of the late maturity medium japonica rice varieties released in Jiangsu province in the last 30 years. Chin J Rice Sci, 2014,28:327-334 (in Chinese with English abstract).
[5] Gu J F, Chen J, Chen L, Wang Z Q, Zhang H, Yang J C. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. Crop J, 2015,3:285-297.
[6] 王远征, 王晓菁, 李源, 徐海, 王嘉宇, 赵明辉, 唐亮, 马殿荣, 徐正进, 陈温福. 北方粳稻产量与品质性状及其相互关系分析. 作物学报, 2015,41:910-918.
Wang Y Z, Wang X J, Li Y, Xu H, Wang J Y, Zhao M H, Tang L, Ma D R, Xu Z J, Chen W F. Analysis of yield and quality traits and their relationship in japonica rice in northern china. Acta Agron Sin, 2015,41:910-918 (in Chinese with English abstract).
[7] 徐正进, 陈温福, 张树林, 张文忠, 马殿荣, 刘丽霞, 周淑清. 辽宁水稻穗型指数品种间差异及其与产量和品质的关系. 中国农业科学, 2005,38:1926-1930.
Xu Z J, Chen W F, Zhang S L, Zhang W Z, Ma D R, Liu L X, Zhou S Q. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning. Sci Agric Sin, 2005,38:1926-1930 (in Chinese with English abstract).
[8] 胡蕾, 朱盈, 徐栋, 陈志峰, 胡兵强, 韩超, 裘实, 吴培, 张洪程, 魏海燕. 南方稻区优良食味与高产协同的单季晚粳稻品种特点研究. 中国农业科学, 2019,52:215-227.
Hu L, Zhu Y, Xu D, Chen Z F, Hu B Q, Han C, Qiu S, Wu P, Zhang H C, Wei H Y. Characteristics of good taste and high yield type of single cropping late japonica rice in southern china. Sci Agric Sin, 2019,52:215-227 (in Chinese with English abstract).
[9] Zhu D W, Zhang H C, Guo B W, Xu K, Dai Q G, Wei H Y, Gao H, Hu Y J, Cui P Y, Huo Z Y. Effects of nitrogen level on yield and quality of japonica soft super rice. J Integr Agric, 2017,16:1018-1027.
[10] 刘立军, 桑大志, 刘翠莲, 王志琴, 杨建昌, 朱庆森. 实时实地氮肥管理对水稻产量和氮素利用率的影响. 中国农业科学, 2003,36:1456-1461.
Liu L J, Sang D Z, Liu C L, Wang Z Q, Yang J C, Zhu Q S. Effects of real-time and site-specific nitrogen managements on rice yield and nitrogen use efficiency. Sci Agric Sin, 2003,36:1456-1461 (in Chinese with English abstract).
[11] Rakotoson T, Dusserre J, Letourmy P, Ramonta I R, Cao T V, Ramanantsoanirina A, Roumet P, Ahmadi N, Raboin L M. Genetic variability of nitrogen use efficiency in rainfed upland rice. Field Crops Res, 2017,213:194-203.
[12] 江立庚, 曹卫星, 甘秀芹, 韦善清, 徐建云, 董登峰, 陈念平, 陆福勇, 秦华东. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004,37:490-496.
Jiang L G, Cao W X, Gan X Q, Wei S Q, Xu J Y, Dong D F, Chen N P, Lu F Y, Qin H D. Nitrogen uptake and utilization under different nitrogen management and influence on grain yield and quality in rice. Sci Agric Sin, 2004,37:490-496 (in Chinese with English abstract).
[13] 张洪程, 王秀芹, 戴其根, 霍中洋, 许轲. 施氮量对杂交稻两优培九产量、品质及吸氮特性的影响. 中国农业科学, 2003,36:800-806.
Zhang H C, Wang X Q, Dai Q G, Huo Z Y, Xu K. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice. Sci Agric Sin, 2003,36:800-806 (in Chinese with English abstract).
[14] 徐大勇, 董明辉, 胡曙运, 王学红, 杨建昌, 朱庆森. 水稻品种氮素代谢特性与稻米主要品质性状关系的研究. 西南农业学报, 2005,18:522-528.
Xu D Y, Dong M H, Hu S Y, Wang X H, Yang J C, Zhu Q S. Study on rice plant nitrogen metabolisms and their relationships with grain quality. Southwest China J Agric Sci, 2005,18:522-528 (in Chinese with English abstract).
[15] 中华人民共和国国家标准(GB/T17891-2017)《优质稻谷》. 北京: 中国标准出版社, 2017.
National Standards of P.R.C. (GB/T17891-2017) “High Quality Paddy”. Beijing: Standards Press of China, 2017 (in Chinese).
[16] 中华人民共和国国家标准(GB 5009.5-2016)《食品中蛋白质的测定》. 北京: 中国标准出版社, 2016.
National Standards of P.R.C. (GB 5009.5-2016) “Determination of Protein in Foods”. Beijing: Standards Press of China, 2016 (in Chinese).
[17] 宋小园, 朱仲元, 刘艳伟, 赵宏瑾. 通径分析在SPSS逐步线性回归中的实现. 干旱区研究, 2016,33(1):108-113.
Song X Y, Zhu Z Y, Liu Y W, Zhao Ho J. Application of path analysis in stepwise linear regression SPSS. Arid Zone Res, 2016,33(1):108-113 (in Chinese with English abstract).
[18] 朱庆森, 张祖建, 杨建昌, 曹显祖, 郎有忠, 王增春. 亚种间杂交稻产量源库特征. 中国农业科学, 1997,30:52-59.
Zhu Q S, Zhang Z J, Yang J C, Cao X Z, Lang Y Z, Wang Z C. Source-sink characteristics related to the yield in intersubspecific hybrid rice. Sci Agric Sin, 1997,30:52-59 (in Chinese with English abstract).
[19] 吴桂成, 张洪程, 钱银飞, 李德剑, 周有炎, 徐军, 吴文革, 戴其根, 霍中洋, 许轲, 高辉, 徐宗进, 钱宗华, 孙菊英, 赵品恒. 粳型超级稻产量构成因素协同规律及超高产特征的研究. 中国农业科学, 2010,43:266-276.
Wu G C, Zhang H C, Qian Y F, Li D J, Zhou Y Y, Xu J, Wu W G, Dai Q G, Huo Z Y, Xu K, Gao H, Xu Z J, Qian Z H, Sun J Y, Zhao P H. Rule of grain yield components from high yield to super high yield and the characters of super-high yielding japonica super rice. Sci Agric Sin, 2010,43:266-276 (in Chinese with English abstract).
[20] 吴文革, 张洪程, 吴桂成, 翟超群, 钱银飞, 陈烨, 徐军, 戴其根, 许轲. 超级稻群体籽粒库容特征的初步研究. 中国农业科学, 2007,40:250-257.
Wu W G, Zhang H C, Wu G C, Zhai C Q, Qian Y F, Chen Y, Xu J, Dai Q G, Xu K. Preliminary study on super rice population sink characters. Sci Agric Sin, 2007,40:250-257 (in Chinese with English abstract).
[21] 龚金龙, 胡雅杰, 龙厚元, 常勇, 李杰, 张洪程, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕, 邓张泽, 明庆龙. 大穗型杂交粳稻产量构成因素协同特征及穗部性状. 中国农业科学, 2013,46:686-700.
Gong J L, Hu Y J, Long H Y, Chang Y, Li J, Zhang H C, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y, Deng Z Z, Ming Q L. Study on collaborating characteristics of grain yield components and panicle traits of large panicle hybrid japonica rice. Sci Agric Sin, 2013,46:686-700 (in Chinese with English abstract).
[22] Tirol-Padre A, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at suboptimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res, 1996,46:127-143.
[23] Inthapanya I P, Sihavong P, Sihathep V, Chanphengsay M, Ukai S F, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilised and non-fertilised conditions. Field Crops Res, 2000,65:57-68.
[24] 董桂春, 王熠, 于小凤, 周娟, 彭斌, 李进前, 田昊, 张燕, 袁秋梅, 王余龙. 不同生育期水稻品种氮素吸收利用的差异. 中国农业科学, 2011,44:4570-4582.
Dong G C, Wang Y, Yu X F, Zhou J, Peng B, Li J Q, Tian H, Zhang Y, Yuan Q M, Wang Y L. Differences of nitrogen uptake and utilization of conventional rice varieties with different growth duration. Sci Agric Sin, 2011,44:4570-4582 (in Chinese with English abstract).
[25] Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. Field Crops Res, 2002,74:93-101.
[26] Jiang L G, Dai T B, Jiang D, Cao W X, Gan X Q, Wei S Q. Charactering physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res, 2004,88:239-250.
[27] 吴越, 胡静, 陈琛, 张家星, 李万元, 唐东南, 仲军, 羊彬, 朱正康, 姚友礼, 王余龙, 董桂春. 江苏省早熟晚粳高产水稻新品种氮素吸收利用特征及成因分析. 中国水稻科学, 2017,31:63-74.
Wu Y, Hu J, Chen C, Zhang J X, Li W Y, Tang D N, Zhong J, Yang B, Zhu Z K, Yao Y L, Wang Y L, Dong G C. Nitrogen absorption and utilization characteristics of the newly approved early-maturity late japonica rice cultivars in Jiangsu province. Chin J Rice Sci, 2017,31:63-74 (in Chinese with English abstract).
[28] Balindong J L, Ward R M, Rose T J, Liu L, Raymond C A, Snell P J, Ovenden B W, Waters D L E. Rice grain protein composition influences head rice yield. Cereal Chem, 2018,95, 1-11.
[29] Zhang C Q, Chen S J, Ren X Y, Lu Y, Liu D R, Cai X L, Li Q F, Gao J P, Liu Q Q. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. J Agric Food Chem, 2017,65:2222-2232.
[30] Zhou L J, Liang S S, Ponce K, Marundon S, Ye G Y, Zhao X Q. Factors affecting head rice yield and chalkiness in indica rice. Field Crops Res, 2015,172:1-10.
[31] Isshiki M, Nakajima M, Satoh H, Shimamoto K. Dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J, 2000,23:451-460.
[32] 吴殿星, 夏英武, 李旭晨. 水稻胚乳外观云雾性状形成基础及其快速识别条件分析. 中国水稻科学, 2001,15:192-196.
Wu D X, Xia Y W, Li X C. Formation basis of rice mist endosperm appearance and its rapid identifying factors. Chin J Rice Sci, 2001,15:192-196 (in Chinese with English abstract).
[33] 陆彦, 张晓敏, 祁琰, 张昌泉, 凌裕平, 刘巧泉. 不同透明度水稻籽粒横断面扫描电镜分析. 中国水稻科学, 2018,32:189-199.
Lu Y, Zhang X M, Qi Y, Zhang C Q, Ling Y P, Liu Q Q. Scanning electron microscopic analysis of grain cross-section from rice with different transparency. Chin J Rice Sci, 2018,32:189-199 (in Chinese with English abstract).
[34] 伍时照, 黄超武, 欧烈才, 刘建昭. 水稻品种种性研究: III. 水稻品种品质性状的研究. 中国农业科学, 1985,8:1-7.
Wu S Z, Huang C W, Ou L C, Liu J Z. Studies on varietal characteristics in cultivars of Oryza sativa: III. A study on grain quality characters of rice varieties. Sci Agric Sin, 1985,8:1-7 (in Chinese with English abstract).
[35] Lin J H, Singh H, Chang Y T, Chang Y H. Factor analysis of the functional properties of rice flours from mutant genotypes. Food Chem, 2011,126:1108-1114.
[36] Suwannaporn P, Linnemann A. Rice eating quality among consumers in different rice grain preference countries. J Sens Stud, 2008,23:1-13.
[37] Li H Y, Prakash S, Nicholson T M, Fitzgerald M A, Gilbert R G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem, 2016,196:702-711.
[38] Martin M, Fitzgerald M A. Proteins in rice grains influence cooking properties. J Cereal Sci, 2002,36:285-294.
[39] Jang E H, Lee S J, Hong J Y, Chung H J, Lee Y T, Kang B S, Lim S T. Correlation between physicochemical properties of japonica and indica rice starches. Food Sci Technol, 2016,66:530-537.
[40] Gayin J, Abdel-Aal E S M, Manful J, Bertoft E, Ragaee S. Physical, cooking and thermal properties of African rice ( Oryza glaberrima) and its starch digestibility in vitro. Food Sci Technol, 2017,75:481-487.
[41] 陈温福, 徐正进, 张龙步, 张文忠, 马殿荣. 北方粳型稻超高产育种理论与实践. 中国农业科学, 2007,40:869-874.
Chen W F, Xu Z J, Zhang L B, Zhang W Z, Ma D R. Theories and practices of breeding japonica rice for super high yield. Sci Agric Sin, 2007,40:869-874 (in Chinese with English abstract).
[42] 何道根, 潘晓飚, 屈为栋. 杂交早稻产量和品质性状间的典型相关分析. 杂交水稻, 1998,14(1):36-38.
He D G, Pan X P, Qu W D. Canonical correlation analysis between quality and yield characters of early indica hybrid rice. Hybrid Rice, 1998,14(1):36-38 (in Chinese with English abstract).
[43] 徐正进, 陈温福, 马殿荣, 吕英娜, 周淑清, 刘丽霞. 稻谷粒形与稻米主要品质性状的关系. 作物学报, 2004,30:894-900.
Xu Z J, Chen W F, Ma D R, Lyu Y N, Zhou S Q, Liu L X. Correlations between rice grain shapes and main qualitative characteristics. Acta Agron Sin, 2004,30:894-900 (in Chinese with English abstract).
[44] 王康君, 熊溢伟, 葛立立, 张耗, 王志琴, 杨建昌, 刘立军. 籽粒蛋白质含量不同的转基因水稻株系产量形成特点. 作物学报, 2013,39:1266-1275.
Wang K J, Xiong Y W, Ge L L, Zhang H, Wang Z Q, Yang J C, Liu L J. Yield formation characteristics of transgenic rice strains with different protein contents in grains. Acta Agron Sin, 2013,39:1266-1275 (in Chinese with English abstract).
[45] Tadashi T, Sumiyo N, Yuri M. Cultivar differences in the grain protein accumulation ability in rice ( Oryza sativa L.). Field Crops Res, 2016,192:110-117.
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!