作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2706-2714.doi: 10.3724/SP.J.1006.2022.14220
陈向前(), 姜奇彦(), 孙现军, 牛风娟, 张慧媛, 胡正*(), 张辉*()
CHEN Xiang-Qian(), JIANG Qi-Yan(), SUN Xian-Jun, NIU Feng-Juan, ZHANG Hui-Yuan, HU Zheng*(), ZHANG Hui*()
摘要:
大豆基因家族往往存在多个功能相似的基因, 开发多基因编辑载体对多基因或基因家族进行编辑, 对遗传转化效率低的大豆的基因编辑及基因功能研究具有重要的应用价值。本研究利用大豆特有的不同U6启动子驱动表达sgRNA, 利用载体上同尾酶将不同大豆U6启动子表达的sgRNA进行串联, 成功构建了可以同时对大豆多个基因进行编辑的CRISPR/Cas9多基因编辑表达载体pCambia3301-Cas9-GmU6n-gDNAn。并利用该载体, 在大豆发状根中成功实现了大豆GRF (Growth-Regulating Factor)基因家族不同成员同时被编辑的目的。该载体的创建有效提高了大豆基因编辑效率, 为大豆基因编辑及基因功能研究提供重要的工具。
[1] |
Wyman C, Kanaar R. DNA double-strand break repair: all’s well that ends well. Annu Rev Genet, 2006, 40: 363-383.
doi: 10.1146/annurev.genet.40.110405.090451 |
[2] |
Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013, 31: 688-691.
doi: 10.1038/nbt.2654 |
[3] |
Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol, 2013, 31: 684-686.
doi: 10.1038/nbt.2652 |
[4] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013, 31: 686-688.
doi: 10.1038/nbt.2650 |
[5] |
Zhan X, Lu Y, Zhu J K, Botella J R. Genome editing for plant research and crop improvement. J Integr Plant Biol, 2021, 63: 3-33.
doi: 10.1111/jipb.13063 |
[6] |
Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D L, Wang Z, Zhang Z, Zheng R, Yang L, Zeng L, Liu X, Zhu J K. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA, 2014, 111: 4632-4637.
doi: 10.1073/pnas.1400822111 |
[7] |
Jiang W Z, Yang B, Weeks D P. Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One, 2014, 9: e99225.
doi: 10.1371/journal.pone.0099225 |
[8] |
Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J K. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J, 2014, 12: 797-807.
doi: 10.1111/pbi.12200 pmid: 24854982 |
[9] |
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol, 2014, 32: 947-951.
doi: 10.1038/nbt.2969 |
[10] |
Zheng M, Zhang L, Tang M, Liu J, Liu H, Yang H, Fan S, Terzaghi W, Wang H, Hua W. Knockout of two bnamax1 homologs by CRIPSR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol J, 2020, 18: 644-654.
doi: 10.1111/pbi.13228 pmid: 31373135 |
[11] |
Li B, Liang S, Alariqi M, Wang F, Wang G, Wang Q, Xu Z, Yu L, Naeem Zafar M, Sun L, Si H, Yuan D, Guo W, Wang Y, Lindsey K, Zhang X, Jin S. The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (G. hirsutum) and creation of nontransgenic, gossypol-free cotton. Plant Biotechnol J, 2021, 19: 221-223.
doi: 10.1111/pbi.13470 |
[12] |
Pramanik D, Shelake R M, Park J, Kim M J, Hwang I, Park Y, Kim J Y. CRISPR/Cas9-mediated generation of pathogen- resistant tomato against Tomato yellow leaf curl virus and powdery mildew. Int J Mol Sci, 2021, 22: 1878.
doi: 10.3390/ijms22041878 |
[13] |
Qi X, Zhang C, Zhu J, Liu C, Huang C, Li X, Xie C. Genome editing enables next-generation hybrid seed production technology. Mol Plant, 2020, 13: 1262-1269.
doi: 10.1016/j.molp.2020.06.003 |
[14] |
Ma X, Zhu Q, Chen Y, Liu Y G. CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant, 2016, 9: 961-974.
doi: 10.1016/j.molp.2016.04.009 |
[15] |
Schmutz J, Cannon S B, Schlueter J, Ma J, Mitros T, Nelson W, Hyten D L, Song Q, Thelen J J, Cheng J, Xu D, Hellsten U, May G D, Yu Y, Sakurai T, Umezawa T, Bhattacharyya M K, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X C, Shinozaki K, Nguyen H T, Wing R A, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker R C, Jackson S A. Genome sequence of the palaeopolyploid soybean. Nature, 2010, 463: 178-183.
doi: 10.1038/nature08670 |
[16] | Xie K, Minkenberg B, Yang Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 2015, 12: 3570-3575. |
[17] |
Bollier N, Andrade Buono R, Jacobs T B, Nowack M K. Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR. Plant Biotechnol J, 2021, 19: 651-653.
doi: 10.1111/pbi.13525 |
[18] |
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu Y G. A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 |
[19] |
Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran L P, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019, 19: 131.
doi: 10.1186/s12870-019-1746-6 |
[20] |
Cheng Q, Dong L, Su T, Li T, Gan Z, Nan H, Lu S, Fang C, Kong L, Li H, Hou Z, Kou K, Tang Y, Lin X, Zhao X, Chen L, Liu B, Kong F. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19: 562.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439 |
[21] |
Di Y H, Sun X J, Hu Z, Jiang Q Y, Song G H, Zhang B, Zhao S S, Zhang H. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochem Biophys Res Commun, 2019, 519: 819-823.
doi: 10.1016/j.bbrc.2019.09.074 |
[22] |
Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep, 2015, 5: 10342.
doi: 10.1038/srep10342 |
[23] |
Liu W, Zhou Y, Li X, Wang X, Dong Y, Wang N, Liu X, Chen H, Yao N, Cui X, Jameel A, Wang F, Li H. Tissue-specific regulation of Gma-miR396 family on coordinating development and low water availability responses. Front Plant Sci, 2017, 8: 1112.
doi: 10.3389/fpls.2017.01112 |
[24] |
Niu F N, Jiang Q Y, Sun X J, Hu Z, Wang L X, Zhang H. Large DNA fragment deletion in lncRNA77580 regulates neighboring gene expression in soybean (Glycine max). Funct Plant Biol, 2021, 48: 1139-1147.
doi: 10.1071/FP20400 |
[25] | Zhang X H, Tee L Y, Wang X G, Huang Q S, Yang S H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Theor Nucl Acids, 2015, 4: e264. |
[26] |
Cai Y, Chen L, Sun S, Wu C, Yao W, Jiang B, Han T, Hou W. CRISPR/Cas9-mediated deletion of large genomic fragments in soybean. Int J Mol Sci, 2018, 19: 3835.
doi: 10.3390/ijms19123835 |
[27] |
Zhang P P, Du H Y, Wang J, Pu Y X, Yang C Y, Yan R J, Yang H, Cheng H, Yu D Y. Mutiplex CRISPR/Cas9-mediated metabolic engineering increases soybean isoflavone content and resistance to soybean mosaic virus. Plant Biotechnol J, 2020, 18: 1384-1395.
doi: 10.1111/pbi.13302 |
[28] |
Luo Y, Na R, Nowak J S. Qiu Y, Lu Q S, Yang C, Marsolais F, Tian L. Development of a Csy4-processed guide RNA delivery system with soybean-infecting virus ALSV for genome editing. BMC Plant Biol, 2021, 21: 419.
doi: 10.1186/s12870-021-03138-8 |
[29] |
Ye F, Signer E R. RIGS (repeat-induced gene silencing) in Arabidopsis is transcriptional and alters chromatin configuration. Proc Natl Acad Sci USA, 1996, 93: 10881-10886.
doi: 10.1073/pnas.93.20.10881 |
[30] |
Rosser J M, An W. Repeat-induced gene silencing of L1 transgenes is correlated with differential promoter methylation. Gene, 2010, 456: 15-23.
doi: 10.1016/j.gene.2010.02.005 pmid: 20167267 |
[1] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[2] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[3] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[6] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[7] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[8] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[9] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[10] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[11] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[12] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[13] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[14] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[15] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
|