欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (11): 2724-2732.doi: 10.3724/SP.J.1006.2022.14201

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生籽仁脂肪和蔗糖含量的胚、细胞质、母体遗传效应分析

胡美玲1(), 薛晓梦1, 吴洁1, 郅晨阳1, 刘念1, 陈小平2, 王瑾3, 晏立英1, 王欣1, 陈玉宁1, 康彦平1, 王志慧1, 淮东欣1,*(), 姜慧芳1, 雷永1,*(), 廖伯寿1   

  1. 1中国农业科学院油料作物研究所 / 农业农村部遗传育种重点实验室, 湖北武汉 430062
    2广东省农业科学院作物研究所, 广东广州 510640
    3河北省农林科学院粮油作物研究所, 河北石家庄 050035
  • 收稿日期:2021-10-26 接受日期:2022-01-05 出版日期:2022-11-12 网络出版日期:2022-02-14
  • 通讯作者: 淮东欣,雷永
  • 作者简介:第一作者联系方式: E-mail: hml13419876358@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD1000901);广东省重点领域研发计划项目(2020B020219003);河北省重点研发计划项目(21326316D);湖北省重点研发计划项目(2021BBA077);中央级公益性科研院所基本科研业务费专项(Y2021CG05);中央级公益性科研院所基本科研业务费专项(1610172019003)

Genetic analysis of embryo, cytoplasm, and maternal effects for fat and sucrose contents in peanut seed

HU Mei-Ling1(), XUE Xiao-Meng1, WU Jie1, ZHI Chen-Yang1, LIU Nian1, CHEN Xiao-Ping2, WANG Jin3, YAN Li-Ying1, WANG Xin1, CHEN Yu-Ning1, KANG Yan-Ping1, WANG Zhi-Hui1, HUAI Dong-Xin1,*(), JIANG Hui-Fang1, LEI Yong1,*(), LIAO Bo-Shou1   

  1. 1Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
    2Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    3Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, Hebei, China
  • Received:2021-10-26 Accepted:2022-01-05 Published:2022-11-12 Published online:2022-02-14
  • Contact: HUAI Dong-Xin,LEI Yong
  • Supported by:
    The National Key Research and Development Program of China(2018YFD1000901);The Key Area Research and Development Program of Guangdong Province(2020B020219003);The Key Area Research and Development Program of Hebei Province(21326316D);The Key Area Research and Development Program of Hubei Province(2021BBA077);The Central Public-interest Scientific Institution Basal Research Fund(Y2021CG05);The Central Public-interest Scientific Institution Basal Research Fund(1610172019003)

摘要:

脂肪和蔗糖含量是影响花生品质的重要因素, 了解其遗传特性是开展花生品质改良的理论基础。本研究利用5份脂肪含量和蔗糖含量存在显著差异的花生品系配置不完全双列杂交, 采用广义遗传模型对籽仁中脂肪和蔗糖含量的胚、细胞质和母体遗传效应进行分析。结果表明, 脂肪含量主要受胚加性效应控制, 其次为母体加性效应; 蔗糖含量主要受母体加性效应控制。相关性分析发现, 花生籽仁中脂肪含量和蔗糖含量显著负相关(r = -0.886**), 其中以胚加性相关和细胞质相关为主。杂交亲本遗传效应预测值表明, 高脂肪含量品系18-1951和高蔗糖含量品种冀花甜1号是优良的供体亲本, 以其为亲本, 分别有利于提高花生籽仁的脂肪和蔗糖含量。

关键词: 花生, 脂肪含量, 蔗糖含量, 遗传效应

Abstract:

The contents of fat and sucrose are important factors to peanut quality, and revealing their hereditary properties is critical to improve the quality in peanut. In this study, the analysis of embryo, cytoplasm, and maternal effects for fat and sucrose contents in peanut seed were conducted by using general genetic model. Five peanut lines with significantly different fat and sucrose contents were selected as parents for incomplete diallel crosses. The results indicated that the fat content was mainly controlled by embryo additive effect, followed by maternal additive effect. The sucrose content was primarily governed by maternal additive effect. Correlation analysis showed that there was a significantly negative correlation between fat and sucrose contents in peanut seed (r = -0.886**), which was mostly managed by embryo additive and cytoplasmic effects. Predicted genetic effects suggested that 18-1951 with high fat content and JHT1 with high sucrose content were superior donor parents for improving the contents of fat and sucrose in peanut, respectively.

Key words: peanut, fat content, sucrose content, genetic effect

表1

亲本籽仁脂肪和蔗糖含量"

品种
Variety
脂肪含量
Fat content
蔗糖含量
Sucrose content
18-1951 58.03 2.23
18-3101 57.23 1.99
中花26 Zhonghua 26 54.34 3.81
A1507-3 48.55 6.12
冀花甜1号 Jihuatian 1 47.60 7.48

表2

用于鉴定F1杂种的引物"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
适用组合
Identified cross
PM16-8 F: TCGGGCCATGCACACCCCTAAT 18-1951 × A1507-3; A1507-3 × 18-951
中花26 × A1507-3; 中花26 × 冀花甜1号
Zhonghua 26 × A1507-3; Zhonghua 26 × Jihuatian 1
R: CCATCCCTACCTGTAAACCACT
AGGS1425 F: CATCAGCGCAGGATAAATCAA 冀花甜1号× A1507-3; A1507-3 × 冀花甜1号
Jihuatian 1 × A1507-3; A1507-3 × Jihuatian 1
R: CTGAAGGAGTTTGCAGGAACTT
AGGS1446 F: CCTTTGTGCTTTCAGACAATGA 18-3101 × 18-1951; 18-1951 × 18-3101
R: GCTCCTTCTCTCTCGCTTCTAA

附表1

F1真假杂种鉴定"

组合
Cross combination
真杂种个数
No. of true F1 plants
总个数
Total number of F1 plants
真杂种率
Rate of true F1 plants (%)
18-1951 × A1507-3 26 26 100
A1507-3 × 18-1951 8 8 100
冀花甜1号 × A1507-3 Jihuatian 1 × A1507-3 15 16 93.75
A1507-3 × 冀花甜1号 A1507-3 × Jihuatian 1 14 16 87.5
18-3101 × 18-1951 8 8 100
18-1951 × 18-3101 12 12 100
中花26 × A1507-3 Zhonghua 26 × A1507-3 12 12 100
中花26 × 冀花甜1号Zhonghua 26 × Jihuatian 1 9 15 60

图1

F1及其亲本的籽仁脂肪含量分布 柱上不同小写字母表示不同组别的差异达0.05显著水平。ZH26: 中花26; JHT1: 冀花甜1号。"

图2

F1及其亲本的籽仁蔗糖含量的分布 柱上不同小写字母表示不同组别的差异达0.05显著水平。ZH26: 中花26; JHT1: 冀花甜1号。"

表3

花生籽仁脂肪含量和蔗糖含量遗传方差分量估计值"

方差
Variance
脂肪含量
Fat content
蔗糖含量
Sucrose content
胚加性方差 Embryo addictive variance (VA) 5.0205** 0.0660
胚显性方差 Embryo dominance variance (VD) 0.0974 0.1669*
细胞质效应 Cytoplasmic variance (VC) 0.2854** 0.2049**
母体加性效应 Maternal additive variance (VAm) 2.2833** 1.6391**
母体显性效应 Maternal dominance variance (VDm) 0.2885** 0.2049**
机误 Residual variance (V) 0.2621* 0.0208

表4

花生脂肪含量和蔗糖含量的遗传率分析"

遗传率
Heritability
脂肪含量
Fat content
蔗糖含量
Sucrose content
胚狭义遗传率 Embryo narrow heritability 0.6097** 0.0287
胚广义遗传率 Embryo broad heritability 0.6216** 0.1012**
细胞质遗传率 Cytoplasmic heritability 0.0347** 0.0890**
母体狭义遗传率 Maternal narrow heritability 0.2773** 0.7118**
母体广义遗传率 Maternal broad heritability 0.3122** 0.8008**

表5

花生脂肪含量和蔗糖含量相关分量估计值"

参数
Parameter
脂肪含量与蔗糖含量
Fat content and sucrose content
胚加性相关 Embryo additive correlation (rA) -1.0000**
胚显性相关 Embryo additive correlation (rD) 0.5411**
细胞质相关 Cytoplasmic correlation (rC) -1.0000**
母体加性相关 Maternal additive correlation (rAm) -0.0943**
母体显性相关 Maternal dominance correlation (rDm) 0.0349*

表6

花生籽仁脂肪含量的遗传效应预测值"

亲本
Parent
胚加性效应
Embryo additive effect
细胞质效应
Cytoplasmic effect
母体加性效应
Maternal additive effect
总和
Total
18-1951 1.1962** 0.3688* 0.7326* 3.0226
18-3101 0.9871* 0.7326** 1.4652** 3.1795
中花26 Zhonghua 26 0.3499 0.1741* 0.3483* 0.8673
A1507-3 -2.2249* -0.4382** -0.8764** -3.5395
冀花甜1号 Jihuatian 1 -0.8551** -0.9676** -1.9353** -3.7580

表7

花生蔗糖含量的遗传效应预测值"

亲本
Parent
胚加性效应
Embryo additive effect
细胞质效应
Cytoplasmic effect
母体加性效应
Maternal additive effect
总和
Total
18-1951 -0.2190 -0.3013** -0.6026** -1.1229
18-3101 -1.1775 -0.4601** -0.9202** -1.5578
中花26 Zhonghua 26 0.0381 -0.2691** -0.5383** -0.7693
A1507-3 0.1930 0.2705** 0.5410** 1.0045
冀花甜1号 Jihuatian 1 0.0920 0.7195** 1.4390** 2.2505
[1] 中华人民共和国国家统计局. https://data.stats.gov.cn/. [引用日期: 2021-08-12].
National Bureau of Statistics of China. https://data.stats.gov.cn/. [Reference data: 2021-08-12] (in Chinese).
[2] 淮东欣, 吴洁, 薛晓梦, 刘芳, 胡美玲, 晏立英, 陈玉宁, 王欣, 康彦平, 王志慧, 刘念, 姜慧芳, 雷永, 廖伯寿. 便携式高油酸花生鉴定仪的研制. 中国油料作物学报, 2021, 43: 1150-1158.
Huai D X, Wu J, Xue X M, Liu F, Hu M L, Yan L Y, Chen Y N, Wang X, Kang Y P, Wang Z H, Liu N, Jiang H F, Lei Y, Liao B S. Development of a portable instrument for identifying high oleate peanut. Chin J Oil Crop Sci, 2021, 43: 1150-1158. (in Chinese with English abstract)
[3] 姚云游, 乔玉兰. 花生功能成分及营养价值的研究进展. 中国油脂, 2005, (9): 29-31.
Yao Y Y, Qiao Y L. Advance in study on functional compositions and nutritive value of peanut. Chin Oils Fats, 2005, (9): 29-31. (in Chinese with English abstract)
[4] 张忠信, 朱松, 刘莉娜, 吴艳荣. 花生的营养成分与食疗方剂. 中国食物与营养, 2007, (11): 57-58.
Zhang Z X, Zhu S, Liu L N, Wu Y R. Nutrient composition of peanuts and dietary prescriptions. Food Nutr Chin, 2007, (11): 57-58. (in Chinese)
[5] 王丽, 王强, 刘红芝, 刘丽, 杜寅, 张建书. 花生加工特性与品质评价研究进展. 中国粮油学报, 2011, 26(10): 122-128.
Wang L, Wang Q, Liu H Z, Liu L, Du Y, Zhang J S. Research process on peanut processing characteristics and quality evaluation. J Chin Cereal Oil Assoc, 2011, 26(10): 22-128. (in Chinese with English abstract)
[6] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020, 42: 1-6.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020, 42: 1-6. (in Chinese with English abstract)
[7] 罗虹, 周桂元, 方洪标, 董桂军. 鲜食花生相关生化特性的研究. 花生学报, 2004, 33(4): 1-4.
Luo H, Zhou G Y, Fang H B, Dong G J. Studies on biochemical characters relative to direct edible peanut. J Peanut Sci, 2004, 33(4): 1-4. (in Chinese with English abstract)
[8] 秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38: 666-671.
Qin L, Liu H, Du P, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Qi F Y, Zhang X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chi J Oil Crop Sci, 2016, 38: 666-671. (in Chinese with English abstract)
[9] 张海珍. 油菜籽品质性状的胚、细胞质和母体遗传效应分析. 浙江大学博士学位论文, 浙江杭州, 2004.
Zhang H Z. Analysis of Embryo, Cytoplasm and Maternal Genetic Effects for Quality Traits in Brassca napsuL. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2004. (in Chinese with English abstract)
[10] Brim C A, Schutz W M, Collins F I. Maternal effect on fatty acid composition and oil content of soybeans, Glycine max (L.) Merrill. Crop Sci, 1968, 8: 517-518.
doi: 10.2135/cropsci1968.0011183X000800050001x
[11] Hobbs D H, Flintham J E, Hills M J. Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiol, 2004, 136: 3341-3349.
doi: 10.1104/pp.104.049486
[12] 吴吉祥, 王国建, 朱军, 许馥华, 季道藩. 陆地棉种子性状直接效应和母体效应的遗传分析. 作物学报, 1995, 21: 659-664.
Wu J X, Wang G J, Zhu J, Xu F H, Ji D F. Genetic analysis of direct effects and maternal effects of seed traits in upland cotton. Acta Agron Sin, 1995, 21: 659-664 (in Chinese with abstract).
[13] Pawlowski S H. Seed genotype and oil percentage relationship between seeds of a sunflower. Can J Genet Cytol, 1964, 6: 293-297.
doi: 10.1139/g64-038
[14] Liu J, Hao W J, Liu J, Fan S H, Zhao W, Deng L B, Wang X F, Hu Z Y, Hua W, Wang H Z. A novel chimeric mitochondrial gene confers cytoplasmic effects on seed oil content in polyploid rapeseed (Brassica napus). Mol Plant, 2019, 12: 582-596.
doi: 10.1016/j.molp.2019.01.012
[15] 包海柱, 高聚林, 马庆, 胡树平. 油用向日葵籽实品质性状的遗传研究. 中国粮油学报, 2013, 28(7): 50-55.
Bao H Z, Gao J L, Ma Q, Hu S P. Genetic study of quality traits in oil sunflower seed. J Chin Cereal Oil Assoc, 2013, 28(7): 50-55. (in Chinese with English abstract)
[16] 齐飞艳, 孙子淇, 黄冰艳, 秦利, 石磊, 刘华, 汪晓, 田梦迪, 郑峥, 董文召, 张新友. 基于双列杂交的花生主要品质性状遗传效应分析. 中国油料作物学报, 2021, 43: 600-607.
Qi F Y, Sun Z Q, Huang B Y, Qin L, Shi L, Liu H, Wang X, Tian M D, Zheng Z, Dong W Z, Zhang X Y. Genetic analysis of peanut quality traits based on a diallel cross design. Chin J Oil Crop Sci, 2021, 43: 600-607. (in Chinese with English abstract)
[17] Zhu J. Mixed model approaches for estimating genetic variances and covariances. J Biomathe, 1992, 7: 1-11.
[18] Weir B S, Zhu J. Analysis of cytoplasmic and maternal effects: I. A genetic model for diploid plant seeds and animals. Thero Appl Genet, 1994, 89: 153-159.
[19] Weir B S, Zhu J. Analysis of cytoplasmic and maternal effects: II. Genetic models for triploid endosperms. Theor Appl Genet, 1994, 89: 160-166.
doi: 10.1007/BF00225136 pmid: 24177823
[20] 朱军. 广义遗传模型与数量遗传分析新方法. 浙江农业大学学报, 1994, 20: 551-559.
Zhu J. General genetic models and new analysis methods for quantitative traits. J Zhejiang Agric Univ, 1994, 20: 551-559. (in Chinese with English abstract)
[21] 郭建斌. 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B. QTL Analysis for Oil Content and Fatty Acid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[22] 方敏, 丁小霞, 李培武, 张兆威, 陈小媚, 姜俊, 张文, 甘冬生. 索氏抽提测定含油量的方法改良及其应用. 中国油料作物学报, 2012, 34: 210-214.
Fang M, Ding X X, Lei P W, Zhang Z W, Chen X M, Jiang J, Zhang W, Gan D S. Modification of oilseeds soxhlet extraction for determination of oil content. Chin J Oil Crop Sci, 2012, 34: 210-214. (in Chinese with English abstract)
[23] 李威涛, 郭建斌, 喻博伦, 徐思亮, 陈海文, 吴贝, 龚廷峰, 黄莉, 罗怀勇, 陈玉宁, 周小静, 刘念, 陈伟刚, 姜慧芳. 基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立. 作物学报, 2021, 47: 368-375.
doi: 10.3724/SP.J.1006.2021.04110
Li W T, Guo J B, Yu B L, Xu S L, Chen H W, Wu B, Gong T F, Huang L, Luo H Y, Chen Y N, Zhou X J, Liu N, Chen W G, Jiang H F. Establishment of HPLC-RID method for the determination of soluble sugars in peanut seed. Acta Agron Sin, 2021, 47: 368-375. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04110
[24] 黄冰艳, 胡京枝, 张新友, 苗利娟, 石磊, 吕登宇, 柴芃沛, 冯素萍, 刘华, 韩锁义, 汪晓, 齐飞艳, 孙子淇, 秦利, 董文召. 花生种子脂肪含量的直接和母体遗传效应分析. 中国油料作物学报, 2021, 43: 582-589.
Huang B Y, Hu J Z, Zhang X Y, Miao L J, Shi L, Lyu D Y, Zi P F, Feng S P, Liu H, Han S Y, Wang X, Qi F Y, Sun Z Q, Qin L, Dong W Z. Genetic analysis of direct and maternal effects of fat content in peanut seed. Chin J Oil Crop Sci, 2021, 43: 582-589. (in Chinese with English abstract)
[25] Wang X F, Liu G H, Yang Q, Hua W, Liu J, Wang H Z. Genetic analysis on oil content in rapeseed (Brassica napus L.). Euphytica, 2010, 173: 17-24.
doi: 10.1007/s10681-009-0062-x
[26] Hua W, Li R J, Zhan G M, Liu J, Wang X F, Liu G H, Wang H Z. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis. Plant J, 2012, 69: 432-444.
doi: 10.1111/j.1365-313X.2011.04802.x
[27] Chetelat R T, Klann E, Deverna J W, Yelle S, Bennett A B. Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii. Plant J, 1993, 4: 643-650.
doi: 10.1046/j.1365-313X.1993.04040643.x
[28] Hai Y C, Lin G H, Zhang G Y, Chen Y P, Huang S Y. Improving breeding efficiency for quality and yield of sweet potato. Bot Stud, 2007, 48: 283-292.
[29] Baafi E, Gracen V E, Aduening J M, Blay E T, Ofori K, Carey E E. Genetic control of dry matter, starch and sugar content in sweet potato. Acta Agric Scand Section B: Soil Plant Sci, 2016, 67: 110-118.
[30] 李文, 刘迎春, 张维东, 王秀飞, 杜恒国, 郗登宝. 甜菜主要数量性状遗传研究与应用. 中国糖料, 2005, (3): 6-13.
Li W, Liu Y C, Zhang W D, Wang X F, Du H G, Xi D B. Studies of some important quantitative genetic characters in sugar beet. Sugar Crops Chin, 2005, (3): 6-13. (in Chinese with English abstract)
[31] 宫庆友, 施继卫, 谢河山, 徐磊, 李玲玲. 甜玉米的遗传机理和育种方法. 亚热带农业研究, 2005, (4): 7-9.
Gong Q Y, Shi J W, Xie H S, Xu L, Li L L. Approaches to genetic mechanism and breeding methods of sweets maize. Subtrop Agric Res, 2005, (4): 7-9. (in Chinese with English abstract)
[32] 秦利, 刘华, 张新友, 杜培, 代小冬, 孙子淇, 齐飞艳, 董文召, 黄冰艳, 韩锁义, 张忠信, 徐静. 花生籽仁蔗糖含量多世代联合群体主基因+多基因遗传模型分析. 中国油料作物学报, 2021, 43: 590-599.
Qin L, Liu H, Zhang X Y, Du P, Dai X D, Sun Z Q, Qi F Y, Dong W Z, Huang B Y, Han S Y, Zhang Z X, Xu J. Genetic analysis of sugar content in peanut kernel via mixed major gene plus polygene inheritance model in multi-generation combined population. Chin J Oil Crop Sci, 2021, 43: 590-599. (in Chinese with English abstract)
[33] Jiang G L, Chen P Y, Zhang J P, Palacios L L F, Zeng A L, Wang X Z, Bowen R A, Miller A, Berry H. Genetic analysis of sugar composition and its relationship with protein, oil, and fiber in soybean. Crop Sci, 2018, 58: 2413-2421.
doi: 10.2135/cropsci2018.03.0173
[34] 朱圣庚, 徐长法. 生物化学(第4版, 下册). 北京: 高等教育出版社, 2016. pp 377-383.
Zhu S G, Xu C F. Biochemistry, 4th edn (Volume II). Beijing: Higher Education Press, 2016. pp 377-383. (in Chinese)
[1] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[2] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[3] 徐扬, 张智猛, 丁红, 秦斐斐, 张冠初, 戴良香. 钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控[J]. 作物学报, 2022, 48(8): 2088-2099.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[6] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[7] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 王艺璇, 贾浩, 逯杰, 石晓宇, 赵明宇, 高真真, 赵炯超, 褚庆全. 黄淮海农作区花生生产水足迹及耗水结构分析[J]. 作物学报, 2022, 48(12): 3203-3214.
[10] 刘星, 苏良辰, 李丽梅, 李玲. ChIP-seq分析花生中AhGLK1与AhHDA1调控的下游靶基因网络[J]. 作物学报, 2022, 48(11): 2765-2773.
[11] 王建国, 耿耘, 杨佃卿, 郭峰, 杨莎, 李新国, 唐朝辉, 张佳蕾, 万书波. 单粒精播对中、高产旱地花生群体质量及养分利用的影响[J]. 作物学报, 2022, 48(11): 2866-2878.
[12] 孙棋棋, 郑永美, 于天一, 吴月, 杨吉顺, 吴正锋, 吴菊香, 李尚霞. 施氮对不同结瘤特性花生土壤固氮菌多样性和群落组成的影响[J]. 作物学报, 2022, 48(10): 2575-2587.
[13] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[14] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[15] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 秦治翔;杨佑明;张春华;徐楚年;翟志席. 棉纤维次生壁增厚相关基因的cDNA克隆与分析[J]. 作物学报, 2003, 29(06): 860 -866 .
[3] 倪大虎;易成新;李莉;汪秀峰;张毅;赵开军;王春连;章琦;王文相;杨剑波. 分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系[J]. 作物学报, 2008, 34(01): 100 -105 .
[4] 戴小军;梁满中;陈良碧. 栽培稻种内核糖体基因的ITS序列比较研究[J]. 作物学报, 2007, 33(11): 1874 -1878 .
[5] 汪保华;武耀廷;黄乃泰;郭旺珍;朱协飞;张天真. 陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J]. 作物学报, 2007, 33(11): 1755 -1762 .
[6] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[7] 赵庆华;黄剑华;颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, (01): 15 -20 .
[8] 周录英;李向东;王丽丽;汤笑;林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响[J]. 作物学报, 2008, 34(05): 879 -885 .
[9] 王立新;李云伏;常利芳;黄 岚;李宏博;葛玲玲;刘丽华;姚 骥;赵昌平;姚 骥;赵昌平. 建立小麦品种DNA指纹的方法研究[J]. 作物学报, 2007, 33(10): 1738 -1740 .
[10] 郑天清;徐建龙;傅彬英;高用明;Satish VERUKA;Renee LAFITTE;翟虎渠;万建民;朱苓华;黎志康. 回交高代选择导入系的纹枯病抗性与抗旱性的遗传重叠研究[J]. 作物学报, 2007, 33(08): 1380 -1384 .