作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3080-3090.doi: 10.3724/SP.J.1006.2022.14244
刘淑娴(), 杨宗桃, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升()
LIU Shu-Xian(), YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng()
摘要:
易化子超家族转运蛋白(major facilitator superfamily, MFS)在生物中普遍存在, 锌诱导类辅助因子(zinc induced facilitator like, ZIFL)是MFS成员, 参与小分子有机物运输。本课题组前期利用酵母双杂交(yeast two-hybrid, Y2H)技术从甘蔗(Saccharum spp. hybrid)中分离鉴定了1个与甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)编码蛋白6K2互作的ZIFL, 命名为ScZIFL1。本研究利用双分子荧光互补技术(bimolecular fluorescence complementation, BiFC)进一步验证了ScZIFL1与SCMV-6K2的互作。生物信息学分析表明, ScZIFL1长度为484个氨基酸, 无信号肽, 具有12个跨膜结构域, 为不稳定的疏水性蛋白。序列比对分析表明, ScZIFL1具有MFS保守的半胱氨酸模体、特征基序及反向运输基序。系统进化树分析表明, 该蛋白在单子叶和双子叶植物之间, 以及单子叶C3植物和C4植物之间存在明显分化。亚细胞定位试验表明, ScZIFL1定位于液泡膜, 部分与SCMV-6K2共定位。实时荧光定量PCR分析发现, ScZIFL1基因的表达具有明显的组织特异性, 在茎中表达最高, 叶中次之, 根中最低; 在完成形态建成且处于旺盛工作状态的+1叶和第8节间中的相对表达量显著高于未成熟的心叶、第3节间和渐衰叶片+7叶; 接种SCMV后, ScZIFL1表达量在侵染早期显著上调, 随后持续高表达。
[1] |
Pao S S, Paulsen I T, Saier M H J. Major facilitator superfamily. Microbiol Mol Biol Rev, 1998, 62: 1-34.
doi: 10.1128/MMBR.62.1.1-34.1998 |
[2] |
Yan N. Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys, 2015, 44: 257-283.
doi: 10.1146/annurev-biophys-060414-033901 pmid: 26098515 |
[3] | Saier M H J, Beatty J T, Goffeau A, Harley K T, Heijne W H, Huang S C, Jack D L, Jähn P S, Lew K, Liu J, Pao S S, Paulsen I T, Tseng T T, Virk P S: The major facilitator superfamily. J Mol Microbiol Biotechnol, 1999, 1: 257-279. |
[4] |
Ricachenevsky F K, Sperotto R A, Menguer P K, Sperb E R, Lopes K L, Fett J P. Zinc-induced facilitator-like family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC Plant Biol, 2011, 11: 20.
doi: 10.1186/1471-2229-11-20 pmid: 21266036 |
[5] |
Reddy V S, Shlykov M A, Castillo R, Sun E I, Saier M H J. The major facilitator superfamily (MFS) revisited. FEBS J, 2012, 279: 2022-2035.
doi: 10.1111/j.1742-4658.2012.08588.x pmid: 22458847 |
[6] |
Che J, Yokosho K, Yamaji N, Ma J F. A vacuolar phytosiderophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiol, 2019, 181: 276-288.
doi: 10.1104/pp.19.00598 pmid: 31331995 |
[7] |
Eser O P, Ocak U, Sherchan P, Zhang J H, Tang J. Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J Neurosci Res, 2020, 98: 29-41.
doi: 10.1002/jnr.24327 pmid: 30345547 |
[8] | Diao J, Li S X, Ma L, Zhang P, Bai J Y, Wang J Q, Ma X Q, Ma W. Genome-wide analysis of major facilitator superfamily and its expression in response of poplar to Fusarium oxysporum. Front Genet, 2021, 12: 769888. |
[9] |
Niño-González M, Novo-Uzal E, Richardson D N, Barros P M, Duque P. More transporters, more substrates: the Arabidopsis major facilitator superfamily revisited. Mol Plant, 2019, 12: 1182-1202.
doi: S1674-2052(19)30234-5 pmid: 31330327 |
[10] |
Lorca G L, Barabote R D, Zlotopolski V, Tran C, Winnen B, Hvorup R N, Stonestrom A J, Nguyen E, Huang L W, Kim D S, Saier M H J. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim Biophys Acta, 2007, 1768: 1342-1366.
pmid: 17490609 |
[11] |
Saier M H J, Paulsen I T. Phylogeny of multidrug transporters. Semin Cell Dev Biol, 2001, 12: 205-213.
pmid: 11428913 |
[12] |
Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005 |
[13] |
Remy E, Cabrito T R, Baster P, Batista R A, Teixeira M C, Friml J, Sá-Correia I, Duque P. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell, 2013, 25: 901-926.
doi: 10.1105/tpc.113.110353 |
[14] |
Kathare P K, Dharmasiri S, Vincill E D, Routray P, Ahmad I, Roberts D M, Dharmasiri N. Arabidopsis PIC30 encodes a major facilitator superfamily transporter responsible for the uptake of picolinate herbicides. Plant J, 2020, 102: 18-33.
doi: 10.1111/tpj.14608 |
[15] |
Wang M, Gong J, Bhullar N K. Iron deficiency triggered transcriptome changes in bread wheat. Comput Struct Biotechnol J, 2020, 18: 2709-2722.
doi: 10.1016/j.csbj.2020.09.009 |
[16] |
Haydon M J, Cobbett C S. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol, 2007, 143: 1705-1719.
doi: 10.1104/pp.106.092015 |
[17] |
Sharma S, Kaur G, Kumar A, Meena V, Kaur J, Pandey A K. Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress. BMC Mol Biol, 2019, 20: 22.
doi: 10.1186/s12867-019-0139-6 pmid: 31547799 |
[18] | 程龙军, 葛红娟. Nicotianamine (NA)在植物中的作用. 植物生理学通讯, 2009, 45: 821-826. |
Cheng L J, Ge H J. Roles of nicotianamine in plants. Plant Physiol Commun, 2009, 45: 821-826. (in Chinese with English abstract) | |
[19] |
Haydon M J, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell, 2012, 24: 724-737.
doi: 10.1105/tpc.111.095042 |
[20] |
Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem, 2011, 286: 5446-5454.
doi: 10.1074/jbc.M110.180026 pmid: 21156806 |
[21] |
Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem, 2015, 290: 27688-27699.
doi: 10.1074/jbc.M114.635193 pmid: 26432636 |
[22] | 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1): 11-16. |
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Canesugar, 2005, (1): 11-16. (in Chinese with English abstract) | |
[23] | 李文凤, 丁铭, 方琦, 黄应昆, 张仲凯, 董家红, 苏晓霞, 李婷婷. 云南甘蔗花叶病病原的初步鉴定. 中国糖料, 2006, (2): 4-7. |
Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Preliminary identification of sugarcane mosaic pathogeny in Yunnan. Sugar Crops China, 2006, (2): 4-7. (in Chinese with English abstract) | |
[24] | Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus - long history but still a threat to industry. Crop Prot, 2012, 42: 74-78. |
[25] |
Putra L K, Kristini A, Achadian E M, Damayanti T A. Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Technol, 2014, 16: 392-399.
doi: 10.1007/s12355-013-0279-9 |
[26] | 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613. |
Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015, 46: 609-613. (in Chinese with English abstract) | |
[27] | 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370. |
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract). | |
[28] | 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018, 48: 389-394. |
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018, 48: 389-394. (in Chinese with English abstract) | |
[29] | 沈林波, 吴楠楠, 冯小艳, 熊国如, 赵婷婷, 王文治, 王俊刚, 张树珍. 52个甘蔗品种在广西受病毒侵染情况. 热带作物学报, 2020, 41(1): 116-126. |
Shen L B, Wu N N, Feng X Y, Xiong G R, Zhao T T, Wang W Z, Wang J G, Zhang S Z. Virus infection situation of fifty-two sugarcane varieties in Guangxi. Chin J Trop Crops, 2020, 41(1): 116-126. (in Chinese with English abstract) | |
[30] | 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52. |
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52. (in Chinese with English abstract) | |
[31] |
Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell C A, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2020, 150: 279-294.
doi: 10.1007/s11120-019-00706-w |
[32] | Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Present status of the sugarcane mosaic subgroup of potyviruses. Arch Virol, 1992, 5: 363-373. |
[33] |
Shukla D D, Tosic M, Jilka J, Ford R E, Toler R W, Langham M A C. Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal antibodies directed towards virus-specific N-termini of coat proteins. Phytopathology, 1989, 79: 223-229.
doi: 10.1094/Phyto-79-223 |
[34] |
Xu D, Park J W, Mirkov T E, Zhou G. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601 |
[35] |
冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017, 33(7): 22-28.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0084 |
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017, 33(7): 22-28. (in Chinese with English abstract) | |
[36] | 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45(2): 135-140. |
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45(2): 135-140. (in Chinese with English abstract) | |
[37] |
翟玉山, 彭磊, 杨永庆, 邓宇晴, 程光远, 郑艳茹, 徐景升. 甘蔗条纹花叶病毒HC-Pro、P3N-PIPO、CP和VPg基因酵母双杂交诱饵表达载体的构建及自激活检测. 华北农学报, 2016, 31(1): 83-89.
doi: 10.7668/hbnxb.2016.01.014 |
Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S. Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg from Sugarcane streak mosaic virus for yeast two hybrid system. Acta Agric Boreali-Sin, 2016, 31(1): 83-89. (in Chinese with English abstract) | |
[38] |
Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus (SCSMV). Trop Plant Biol, 2017, 10: 45-55.
doi: 10.1007/s12042-016-9183-2 |
[39] |
Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S. Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun, 2015, 466: 312-318.
doi: 10.1016/j.bbrc.2015.09.015 |
[40] |
Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991, 32: 269-296.
pmid: 1657820 |
[41] |
Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G. Molecular cloning, sequencing, and phylogenetic relationships of a new Potyvirus: Sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol Phylogenet Evol, 1998, 10: 323-332.
pmid: 10051385 |
[42] |
Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus (SCSMV). Arch Virol, 2011, 156: 2101-2104.
doi: 10.1007/s00705-011-1090-0 |
[43] |
Xu D, Zhou G, Xie Y, Mock R, Li R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010, 40: 432-439.
doi: 10.1007/s11262-010-0457-8 pmid: 20162446 |
[44] |
Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018, 102: 2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899 |
[45] |
Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus (SCMV) in Nigeria. Plant Dis, 2019, 103: 818-824.
doi: 10.1094/PDIS-08-18-1445-RE pmid: 30806574 |
[46] |
Cheng G, Dong M, Xu Q, Peng L, Yang Z T, Wei T, Xu J. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017, 7: 9868.
doi: 10.1038/s41598-017-10497-6 |
[47] |
Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019, 20: 3867.
doi: 10.3390/ijms20163867 |
[48] | 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020, 46: 1722-1733. |
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020, 46: 1722-1733. (in Chinese with English abstract) | |
[49] |
张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作. 作物学报, 2021, 47: 1522-1530.
doi: 10.3724/SP.J.1006.2021.04194 |
Zhang H, Cheng G Y, Yang Z T, Liu S X, Shang H Y, Huang G Q, Xu J S. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2. Acta Agron Sin, 2021, 47: 1522-1530. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04194 |
|
[50] |
张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究. 作物学报, 2021, 47: 94-103.
doi: 10.3724/SP.J.1006.2021.04156 |
Zhang H, Cheng G Y, Yang Z T, Liu S X, Shang H Y, Zhao H, Xu J S. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection. Acta Agron Sin, 2021, 47: 94-103. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04156 |
|
[51] |
杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作研究. 作物学报, 2022, 48: 332-341.
doi: 10.3724/SP.J.1006.2022.14001 |
Yang Z T, Liu S X, Cheng G Y, Zhang H, Zhou Y S, Shang H Y, Huang G Q, Xu J S. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2. Acta Agron Sin, 2022, 48: 332-341. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14001 |
|
[52] |
Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberté J F. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiol, 2013, 4: 351.
doi: 10.3389/fmicb.2013.00351 pmid: 24409170 |
[53] |
Jiang J, Patarroyo C, Garcia Cabanillas D, Zheng H, Laliberté J F. The vesicle-forming 6K2 protein of Turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J Virol, 2015, 89: 6695-6710.
doi: 10.1128/JVI.00503-15 pmid: 25878114 |
[54] |
Lõhmus A, Varjosalo M, Mäkinen K. Protein composition of 6K2-induced membrane structures formed during Potato virus A infection. Mol Plant Pathol, 2016, 17: 943-958.
doi: 10.1111/mpp.12341 |
[55] |
Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2019, 225: 2122-2139.
doi: 10.1111/nph.16285 |
[56] |
Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017, 175: 1732-1744.
doi: 10.1104/pp.17.01484 |
[57] |
Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019, 179: 507-518.
doi: 10.1104/pp.18.01342 |
[58] |
Li F F, Zhang C W, Tang Z W, Zhang L R, Dai Z J, Lyu S W, Li Y Z, Hou X L, Bernards M, Wang A M. A plant RNA virus activates selective autophagy in a UPR-dependent manner to promote virus infection. New Phytol, 2020, 228: 622-639.
doi: 10.1111/nph.16716 |
[59] | 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782. |
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract). | |
[60] | Xu J, Deng Y, Cheng G, Zhai Y, Peng L, Dong M, Xu Q, Yang Y. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. J Intergr Agric, 2019, 18: 2294-2301. |
[61] | 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014, 34: 676-681. |
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014, 34: 676-681. (in Chinese with English abstract) | |
[62] |
Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042.
doi: 10.1038/srep07042 pmid: 25391499 |
[63] |
Xu L, Zhao H Y, Wan R J, Liu Y, Xu Z, Tian W, Ruan W Y, Wang F, Deng M J, Wang J M, Dolan L, Luan S W, Xue S W, Yi K K. Identification of vacuolar phosphate efflux transporters in land plants. Nat Plants, 2019, 5: 84-94.
doi: 10.1038/s41477-018-0334-3 pmid: 30626920 |
[64] | 郭家文, 张跃彬, 刘少春, 罗志明, 崔雄维. 硼钼锌单施及配施对甘蔗产量和品质的影响. 西南农业学报, 2009, 22: 716-720. |
Guo J W, Zhang Y B, Liu S C, Luo Z M, Cui X W. Effects of sole fertilization of B, Mo, Zn and combined application on the stem yield and quality of sugarcane. J South Agric, 2009, 22: 716-720. (in Chinese with English abstract) | |
[65] | Balafrej H, Bogusz D, Triqui Z A, Guedira A, Bendaou N, Smouni A, Fahr M. Zinc hyperaccumulation in plants: a review. Plants (Basel), 2020, 9: 562. |
[66] |
Kaur H, Garg N. Zinc toxicity in plants: a review. Planta, 2021, 253: 129.
doi: 10.1007/s00425-021-03642-z pmid: 34043068 |
[67] |
Sinclair S A, Krämer U. The zinc homeostasis network of land plants. Biochim Biophys Acta, 2012, 1823: 1553-1567.
doi: 10.1016/j.bbamcr.2012.05.016 pmid: 22626733 |
[68] |
Yruela I. Transition metals in plant photosynthesis. Metallomics, 2013, 5: 1090-1109.
doi: 10.1039/c3mt00086a pmid: 23739807 |
[69] |
Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010, 76: 1-32.
doi: 10.1016/S0065-3527(10)76001-2 pmid: 20965070 |
[70] |
Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276 |
[71] | 李琳, 丁峰, 潘介春, 张树伟, 黄幸, 王金英, 王颖, 李浩然, 徐炯志, 彭宏祥, 何新华. 植物锌指蛋白转录因子家族研究进展. 热带农业科学, 2020, 40(2): 65-75. |
Li L, Ding F, Pan J C, Zhang S W, Huang X, Wang J Y, Wang Y, Li H R, Xu J Z, Peng H X, He X H. Research progress on family of plant Zinc-Finger protein transcription factors. Chin J Trop Crops, 2020, 40(2): 65-75. (in Chinese with English abstract) |
[1] | 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341. |
[2] | 许彬, 曹绍玉, 苏甜, 彭梦玲, 吕霞, 李振林, 张国平, 许俊强. 结球甘蓝类钙调蛋白CMLs与花粉萌发NPG1及NPGRs相互作用研究[J]. 作物学报, 2022, 48(11): 2934-2944. |
[3] | 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530. |
[4] | 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209. |
[5] | 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236. |
[6] | 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103. |
[7] | 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857. |
[8] | 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究[J]. 作物学报, 2020, 46(11): 1722-1733. |
[9] | 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225. |
[10] | 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766. |
[11] | 张小红,许鹏博,郭萌萌,徐兆师,李连城,陈明,马有志. 拟南芥G蛋白α亚基GPA1互作蛋白铜离子结合蛋白AtBCB的鉴定及功能分析[J]. 作物学报, 2013, 39(11): 1952-1961. |
[12] | 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726. |
[13] | 汤青林,许俊强,宋明,王志敏. 芥菜AP1基因体外表达及其与FLC相互作用的验证[J]. 作物学报, 2012, 38(07): 1328-1333. |
[14] | 邱志刚, 徐兆师, 郑天慧, 李连城, 陈明, 马有志. 小麦ERF转录因子W17互作蛋白的筛选和解析[J]. 作物学报, 2011, 37(05): 803-810. |
[15] | 宋健民,戴双,李豪圣,刘爱峰,程敦公,楚秀生,Ian J Tetlow,Michael J Emes. 小麦胚乳14-3-3蛋白的表达及其淀粉体淀粉合成酶的互作[J]. 作物学报, 2009, 35(8): 1445-1450. |
|