作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3071-3079.doi: 10.3724/SP.J.1006.2022.14227
杨文静(), 陆海芹, 陈吴钧, 曾蕾, 谢涛, 蒋金金(), 王幼平
YANG Wen-Jing(), LU Hai-Qin, CHEN Wu-Jun, ZENG Lei, XIE Tao, JIANG Jin-Jin(), WANG You-Ping
摘要:
MicroRNA171 (miR171)是植物中非常保守的miRNA分子, 在调控植物生长发育方面具有重要的功能。关于其功能研究的报道多见于拟南芥、水稻、番茄等植物, 而甘蓝型油菜中miR171的功能研究还尚未报道。本研究发现Bna-miR171家族7个成员的序列高度保守, 其中miR171g受甘露醇诱导上调表达。在150 mmol L-1甘露醇模拟的渗透胁迫条件下, Bna-miR171g过表达油菜(OE-miR171g)的根长显著高于对照(J9712)。DAB组织化学染色结果表明渗透胁迫后OE-miR171g中过氧化氢的积累量低于J9712, 推测Bna-miR171g过表达材料的活性氧清除能力高于对照植株。渗透胁迫后OE-miR171g中脯氨酸含量、过氧化物酶和超氧化物歧化酶活性均高于对照, 而丙二醛含量显著低于对照。此外, 胁迫应答基因ABI5、ERD10、RAB18、OSR1、RD20、RD29B在OE-miR171g中的表达水平均高于对照植株。综上, 过表达Bna-miR171g可以提高甘蓝型油菜对渗透胁迫的耐受性, 本研究可以为甘蓝型油菜的抗逆性状改良提供理论依据。
[1] | 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617. |
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract) | |
[2] | 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41: 485-489. |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41: 485-489. (in Chinese with English abstract) | |
[3] | Lohani N, Jain D, Singh M B, Bhalla P L. Engineering multiple abiotic stress tolerance in canola, Brassica napus. Front Plant Sci, 2020, 11: 3. |
[4] |
Trenberth K E, Dai A, Van Der Schrier G, Jones P D, Barichivich J, Briffa K R, Sheffield J. Global warming and changes in drought. Nat Clim Change, 2014, 4: 17-22.
doi: 10.1038/nclimate2067 |
[5] | 张树杰, 王汉中. 我国油菜生产应对气候变化的对策和措施分析. 中国油料作物学报, 2012, 34: 114-122. |
Zhang S J, Wang H Z. Policies and strategies analyses of rapeseed production response to climate change in China. Chin J Oil Crop Sci, 2012, 34: 114-122. (in Chinese with English abstract) | |
[6] | 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015, 47(4): 125-130. |
Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric Sci, 2015, 47(4): 125-130. (in Chinese with English abstract) | |
[7] |
Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247-273.
doi: 10.1146/annurev.arplant.53.091401.143329 |
[8] |
Leung J, Bouvier-Durand M, Morris P C, Guerrier D, Chefdor F, Giraudat J. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science, 1994, 264: 1448-1452.
pmid: 7910981 |
[9] |
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi- Shinozaki K, Shinozaki K.Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391-1406.
pmid: 9707537 |
[10] |
Boudsocq M, Barbier-Brygoo H, Lauriere C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem, 2004, 279: 41758-41766.
doi: 10.1074/jbc.M405259200 pmid: 15292193 |
[11] |
Monks D E, Aghoram K, Courtney P D, Dewald D B, Dewey R E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 2001, 13: 1205-1219.
doi: 10.1105/tpc.13.5.1205 pmid: 11340192 |
[12] |
Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101: 17306-17311.
doi: 10.1073/pnas.0407758101 |
[13] |
Mao X, Zhang H, Tian S, Chang X, Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot, 2010, 61: 683-696.
doi: 10.1093/jxb/erp331 |
[14] |
Zhang H, Mao X, Jing R, Chang X, Xie H. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. J Exp Bot, 2011, 62: 975-988.
doi: 10.1093/jxb/erq328 |
[15] |
Ying S, Zhang D F, Li H Y, Liu Y H, Shi Y S, Song Y C, Wang T Y, Li Y. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant Cell Rep, 2011, 30: 1683-1699.
doi: 10.1007/s00299-011-1077-z |
[16] |
Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Planta, 2013, 147: 15-27.
doi: 10.1111/j.1399-3054.2012.01635.x |
[17] |
Wu J, Yan G, Duan Z, Wang Z, Kang C, Guo L, Liu K, Tu J, Shen J, Yi B, Fu T, Li X, Ma C, Dai C. Roles of the Brassica napus DELLA protein BnaA6.RGA, in modulating drought tolerance by interacting with the ABA signaling component BnaA10.ABF2. Front Plant Sci, 2020, 11: 577.
doi: 10.3389/fpls.2020.00577 |
[18] |
Yang M, Yang Q, Fu T, Zhou Y. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep, 2011, 30: 373-388.
doi: 10.1007/s00299-010-0940-7 |
[19] |
Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M. Drought-responsive genes, LEA3) and vicinal oxygen chelate, function in lipid accumulation in Brassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnol J, 2019, 17: 2123-2142.
doi: 10.1111/pbi.13127 pmid: 30972883 |
[20] |
Georges F, Das S, Ray H, Bock C, Nokhrina K, Kolla VA, Keller W. Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant Cell Environ, 2009, 32: 1664-1681.
doi: 10.1111/j.1365-3040.2009.02027.x |
[21] |
Li Q, Yin M, Li Y, Fan C, Yang Q, Wu J, Zhang C, Wang H, Zhou Y. Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes. J Exp Bot, 2015, 66: 5821-5836.
doi: 10.1093/jxb/erv287 |
[22] |
Xiong J L, Wang H C, Tan X Y, Zhang C L, Naeem M S. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiol Biochem, 2018, 124: 88-99.
doi: 10.1016/j.plaphy.2018.01.001 |
[23] |
Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol, 2006, 57: 19-53.
pmid: 16669754 |
[24] |
Zhou R, Yu X, Ottosen C O, Zhang T, Wu Z, Zhao T. Unique miRNAs and their targets in tomato leaf responding to combined drought and heat stress. BMC Plant Biol, 2020, 20: 107.
doi: 10.1186/s12870-020-2313-x pmid: 32143575 |
[25] |
Liu H H, Tian X, Li Y J, Wu C A, Zheng C C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 2008, 14: 836-843.
doi: 10.1261/rna.895308 |
[26] |
Jian H, Wang J, Wang T, Wei L, Li J, Liu L. Identification of rapeseed microRNAs involved in early stage seed germination under salt and drought stresses. Front Plant Sci, 2016, 7: 658.
doi: 10.3389/fpls.2016.00658 pmid: 27242859 |
[27] |
Hwang E W, Shin S J, Yu B K, Byun M O, Kwon H B. MiR171 family members are involved in drought response in Solanum tuberosum. J Plant Biol, 2010, 54: 43-48.
doi: 10.1007/s12374-010-9141-8 |
[28] |
Liu Z, Lei X, Wang P, Wang Y, Lv J, Li X, Gao C. Overexpression of ThSAP30BP from Tamarix hispida improves salt tolerance. Plant Physiol Biochem, 2020, 146: 124-132.
doi: 10.1016/j.plaphy.2019.11.020 |
[29] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[30] |
Yang Y, Zhu K, Li H, Han S, Meng Q, Khan S U, Fan C, Xie K, Zhou Y. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J, 2018, 16: 1322-1335.
doi: 10.1111/pbi.12872 pmid: 29250878 |
[31] | Li J, Lin K, Zhang S, Wu J, Fang Y, Wang Y. Genome-wide analysis of myeloblastosis-related genes in Brassica napus L. and positive modulation of osmotic tolerance by BnMRD107. Front Plant Sci, 2021, 12: 678202. |
[32] |
Jiang J, Yuan Y, Zhu S, Fang T, Ran L, Wu J, Wang Y. Comparison of physiological and methylational changes in resynthesized Brassica napus and diploid progenitors under drought stress. Acta Physiol Plant, 2019, 41: 45.
doi: 10.1007/s11738-019-2837-6 |
[33] |
Xia L, Yang L, Sun N, Li J, Fang Y, Wang Y. Physiological and antioxidant enzyme gene expression analysis reveals the improved tolerance to drought stress of the somatic hybrid offspring of Brassica napus and Sinapis alba at vegetative stage. Acta Physiol Plant, 2016, 38: 88.
doi: 10.1007/s11738-016-2111-0 |
[34] |
Kantar M, Lucas S J, Budak H. MiRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 2011, 233: 471-484.
doi: 10.1007/s00425-010-1309-4 pmid: 21069383 |
[35] |
Dalton-Morgan J, Hayward A, Alamery S, Tollenaere R, Mason A S, Campbell E, Patel D, Lorenc M T, Yi B, Long Y, Meng J, Raman R, Raman H, Lawley C, Edwards D, Batley J. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Funct Integr Genomics, 2014, 14: 643-655.
doi: 10.1007/s10142-014-0391-2 |
[36] | Luo J, Tang S, Mei F, Peng X, Li J, Li X, Yan X, Zeng X, Liu F, Wu Y, Wu G. BnSIP1-1, a trihelix family gene, mediates abiotic stress tolerance and ABA signaling in Brassica napus. Front Plant Sci, 2017, 8: 44. |
[37] | Yang H, Deng L, Liu H, Fan S, Hua W, Liu J. Overexpression of BnaAOX1b confers tolerance to osmotic and salt stress in rapeseed. Gene Genom Genet, 2019, 9: 3501-3511. |
[38] |
Liu N, Chen J, Wang T, Li Q, Cui P, Jia C, Hong Y. Overexpression of WAX INDUCER1/SHINE1 gene enhances wax accumulation under osmotic stress and oil synthesis in Brassica napus. Int J Mol Sci, 2019, 20: 4435.
doi: 10.3390/ijms20184435 |
[39] |
Chen L, Ren F, Zhou L, Wang Q Q, Zhong H, Li X B. The Brassica napus calcineurin B-like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J Exp Bot, 2012, 63: 6211-6222.
doi: 10.1093/jxb/ers273 |
[40] |
Xie M, Zhang S, Yu B. MicroRNA biogenesis, degradation and activity in plants. Cell Mol Life Sci, 2015, 72: 87-99.
doi: 10.1007/s00018-014-1728-7 pmid: 25209320 |
[41] | Li J, Duan Y, Sun N, Wang L, Feng S, Fang Y, Wang Y. The miR169n-NF-YA8 regulation module involved in drought resistance in Brassica napus L. Plant Sci, 2021, 313: 111062. |
[42] |
Song X, Li Y, Cao X, Qi Y. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol, 2019, 70: 489-525.
doi: 10.1146/annurev-arplant-050718-100334 pmid: 30848930 |
[43] |
Raza A, Su W, Gao A, Mehmood S S, Hussain M A, Nie W, Lv Y, Zou X, Zhang X. Catalase (CAT) gene family in rapeseed (Brassica napus L.): genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions. Int J Mol Sci, 2021, 22: 4281.
doi: 10.3390/ijms22084281 |
[44] |
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405-410.
doi: 10.1016/s1360-1385(02)02312-9 pmid: 12234732 |
[45] |
Naheed R, Aslam H, Kanwal H, Farhat F, Gamar M I A, Al-Mushhin A A M, Jabborova D, Ansari M J, Shaheen S, Aqeel M, Noman A, Hessini K. Growth attributes, biochemical modulations, antioxidant enzymatic metabolism and yield in Brassica napus varieties for salinity tolerance. Saudi J Biol Sci, 2021, 28: 5469-5479.
doi: 10.1016/j.sjbs.2021.08.021 |
[46] |
El-Badri A M, Batool M, Mohamed I A A, Wang Z, Khatab A, Sherif A, Ahmad H, Khan M N, Hassan H M, Elrewainy I M, Kuai J, Zhou G, Wang B. Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxidants, 2021, 10: 1227.
doi: 10.3390/antiox10081227 |
[47] |
Zhang Y, Yang C, Li Y, Zheng N, Chen H, Zhao Q, Gao T, Guo H, Xie Q.SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell, 2007, 19: 1912-1929.
doi: 10.1105/tpc.106.048488 |
[48] |
Kovacs D, Kalmar E, Torok Z, Tompa P. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol, 2008, 147: 381-390.
doi: 10.1104/pp.108.118208 pmid: 18359842 |
[49] |
Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Simonneau T, Vavasseur A, Galaud J P. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol, 2010, 51: 1975-1987.
doi: 10.1093/pcp/pcq155 pmid: 20952421 |
[50] |
Jeannette E, Rona J P, Bardat F, Cornel D, Sotta B, Miginiac E. Induction of RAB18gene expression and activation of K+outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant J, 1999, 18: 13-22.
pmid: 10341440 |
[51] |
Bihmidine S, Lin J, Stone J M, Awada T, Specht J E, Clemente T E. Activity of the Arabidopsis RD29A and RD29B promoter elements in soybean under water stress. Planta, 2013, 237: 55-64.
doi: 10.1007/s00425-012-1740-9 pmid: 22983672 |
[52] |
Lim C W, Baek W, Lee S C. Roles of pepper bZIP protein CaDILZ1 and its interacting partner RING-type E3 ligase CaDSR1 in modulation of drought tolerance. Plant J, 2018, 96: 452-467.
doi: 10.1111/tpj.14046 |
[1] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[2] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[3] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[4] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[5] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[6] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答[J]. 作物学报, 2022, 48(12): 3004-3017. |
[11] | 吴家怡, 袁芳, 孟丽姣, 李晨阳, 史红松, 白岩松, 武晓如, 李加纳, 周清元, 崔翠. 铝胁迫下甘蓝型油菜苗期光合相关性状的QTL定位及候选基因筛选[J]. 作物学报, 2022, 48(11): 2749-2764. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[14] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
[15] | 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598. |
|