欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3080-3090.doi: 10.3724/SP.J.1006.2022.14244

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗易化子家族蛋白ScZIFL1与6K2互作应答SCMV侵染

刘淑娴(), 杨宗桃, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升()   

  1. 农业农村部福建甘蔗生物学与遗传育种重点实验室 / 福建农林大学国家甘蔗工程技术研究中心 / 教育部作物遗传育种与综合利用重点实验室, 福建福州 350002
  • 收稿日期:2021-12-22 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-19
  • 通讯作者: 徐景升
  • 作者简介:E-mail: Liushuxian1010@163.com
  • 基金资助:
    国家自然科学基金项目(31971991);福建农林大学科技创新基金(CXZX2018026)

Interaction of sugarcane main facilitator superfamily member ScZIFL1 with 6K2 in response to Sugarcane mosaic virus infection

LIU Shu-Xian(), YANG Zong-Tao, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng()   

  1. Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2021-12-22 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-19
  • Contact: XU Jing-Sheng
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2018026)

摘要:

易化子超家族转运蛋白(major facilitator superfamily, MFS)在生物中普遍存在, 锌诱导类辅助因子(zinc induced facilitator like, ZIFL)是MFS成员, 参与小分子有机物运输。本课题组前期利用酵母双杂交(yeast two-hybrid, Y2H)技术从甘蔗(Saccharum spp. hybrid)中分离鉴定了1个与甘蔗花叶病毒(Sugarcane mosaic virus, SCMV)编码蛋白6K2互作的ZIFL, 命名为ScZIFL1。本研究利用双分子荧光互补技术(bimolecular fluorescence complementation, BiFC)进一步验证了ScZIFL1与SCMV-6K2的互作。生物信息学分析表明, ScZIFL1长度为484个氨基酸, 无信号肽, 具有12个跨膜结构域, 为不稳定的疏水性蛋白。序列比对分析表明, ScZIFL1具有MFS保守的半胱氨酸模体、特征基序及反向运输基序。系统进化树分析表明, 该蛋白在单子叶和双子叶植物之间, 以及单子叶C3植物和C4植物之间存在明显分化。亚细胞定位试验表明, ScZIFL1定位于液泡膜, 部分与SCMV-6K2共定位。实时荧光定量PCR分析发现, ScZIFL1基因的表达具有明显的组织特异性, 在茎中表达最高, 叶中次之, 根中最低; 在完成形态建成且处于旺盛工作状态的+1叶和第8节间中的相对表达量显著高于未成熟的心叶、第3节间和渐衰叶片+7叶; 接种SCMV后, ScZIFL1表达量在侵染早期显著上调, 随后持续高表达。

关键词: 甘蔗花叶病毒, 6K2, ZIFL1, 蛋白互作

Abstract:

The major facilitator superfamily (MFS) members are extensively distributed in the organisms. The zinc induced facilitator like proteins (ZIFL), members of the MFS, are involved in the transport of small organic molecules. In our previous study, the ZIFL homologue was screened from sugarcane (Saccharum spp. hybrid) and identified to interact with Sugarcane mosaic virus (SCMV) coding protein 6K2 by yeast two-hybrid (Y2H), then named as ScZIFL1. In the present study, the interaction of ScZIFL1 with SCMV-6K2 was further confirmed by bimolecular fluorescence complementation (BiFC) assays. Bioinformatics analysis showed that ScZIFL1 coded 484 aa, and was an unstable hydrophobic protein without signal peptide but 12 transmembrane domains. Sequences alignment revealed the conserved cysteine-containing motif, canonical MFS signature, and anti-porter signatures in ScZIFLl. Phylogenetic tree indicated that ZIFLl was divergent between monocotyledons and dicotyledons, as well as C3 and C4 plants. Subcellular localization referred that ScZIFL1 was localized in tonoplast but partially co-localized with SCMV-6K2. ScZIFL1 gene had obvious tissue specificity in sugarcane by RT-qPCR. The relative expression levels of ScZIFL1 genes were the highest in stems, followed by leaves, and the lowest in roots. Specifically, the relative expression levels of ScZIFL1 genes in the established morphogenesis and fully functional tissues such as the leaf +1 and the 8th internode were significantly higher than those in the immature tissues, i.e., leaf roll and the 3rd internode, or the fading tissues, i.e., leaf +7. Upon the infection of SCMV, ScZIFL1 was significantly up-regulated at the early stage and remained higher expression with time going on.

Key words: Sugarcane mosaic virus, 6K2, ZIFL1, protein interaction

表1

本研究使用的引物"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
221-ScZIFL1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCCGGCGGTGGCGGCGA 双分子荧光互补载体构建
221-ScZIFL1-R GGGGACCACTTTGTACAAGAAAGCTGGGTCTGAATGCCTCATTGAATTTG Vector generation for BiFC
ScZIFL1-qF TGGACGAGGCGAACGAGACC 定量PCR
ScZIFL1-qR AGCGGCGGTGAGGCAGAC Real-time qPCR
GAPDH-F CACGGCCACTGGAAGCA 内参基因
GAPDH-R TCCTCAG GGTTCCTGATGCC Reference gene
Actin-F CCTGAAGATCACCCTGTGCT 内参基因
Actin-R GCAGTCTCCAGCTCCTGTTC Reference gene
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
SCMV-CP-R ACGCTACACCAGAAGACACT Detection of SCMV

图1

ScZIFL1跨膜结构域预测"

图2

甘蔗ScZIFL1与其他植物ZIFL1蛋白的氨基酸序列比对 MFS蛋白的半胱氨酸motif CPGC, 特征基序WG(V/M/I)(F/V/A/I)AD(K/R)(Y/I//H/L)GRKP和逆向转运基序S(x8)G(x3)GP(A/T/G) (L/I)GG (x代表任意氨基酸)用红色字体表示, 并以黄色高亮标记。序号I包含的序列来自单子叶植物; 序号II包含的序列来自双子叶植物。ZmZIFL1 (NP_001141824.1): 玉米; SbZIFL1 (XP_002457667.1): 高粱; PhZIFL1 (XP_025817905.1): 黍; SvZIFL1 (XP_034593088.1): 狗尾草; BdZIFL1 (XP_003567304.1): 二穗短柄草; HvZIFL1 (KAE8779043.1): 大麦; TaZIFL1 (KAF7029361.1): 小麦; OsZIFL1 (XP_025880517.1): 水稻; PtZIFL1 (XP_024443823.1): 毛果杨; PpZIFL1 (XP_007217932.1): 桃树; VvZIFL1 (XP_002277598.2): 葡萄; NaZIFL1 (XP_019247413.1): 烟草; AtZIFL1 (OAP02507.1): 拟南芥; StZIFL1 (XP_006347685.1): 马铃薯; GmZIFL1 (XP_006594342.1): 大豆; CaZIFL1 (XP_016582203.1): 辣椒。"

图3

ScZIFL1与其他物种ZIFL1蛋白的系统进化树分析 红色框、绿色框和橘色框分别代表亚群I-1、亚群I-2和群II。"

图4

ScZIFL1-YFP在本氏烟表皮细胞中的定位 A: ScZIFL1-YFP亚细胞定位; B: ScZIFL1-YFP和6K2-CFP亚细胞共定位。比例尺为 25 μm。"

图5

BiFC检测ScZIFL1与SCMV-6K2的互作 A: YN融合于ScZIFL1的N末端, YC融合于SCMV-6K2的C末端; B: YN融合于SCMV-6K2的N末端, YC融合于ScZIFL1的C末端。将6K2-YC和ScZIFL1-YN (A), ScZIFL1-YC和6K2-YN (B)分别共注射到本氏烟叶片中进行瞬时表达, 48 h后激光共聚焦观察。标尺为25 μm。"

图6

ScZIFL1基因的组织特异性表达分析 LR: 心叶; +1 L: +1叶; +7 L: +7叶; +3 I: 第3节间; +8 I: 第8节间; R: 根。误差线为每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05时显著性差异。"

图7

ScZIFL1基因应答SCMV侵染的表达模式 误差线为每组处理的标准误差(n = 3)。柱上不同的小写字母表示在P < 0.05时显著性的差异。"

[1] Pao S S, Paulsen I T, Saier M H J. Major facilitator superfamily. Microbiol Mol Biol Rev, 1998, 62: 1-34.
doi: 10.1128/MMBR.62.1.1-34.1998
[2] Yan N. Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys, 2015, 44: 257-283.
doi: 10.1146/annurev-biophys-060414-033901 pmid: 26098515
[3] Saier M H J, Beatty J T, Goffeau A, Harley K T, Heijne W H, Huang S C, Jack D L, Jähn P S, Lew K, Liu J, Pao S S, Paulsen I T, Tseng T T, Virk P S: The major facilitator superfamily. J Mol Microbiol Biotechnol, 1999, 1: 257-279.
[4] Ricachenevsky F K, Sperotto R A, Menguer P K, Sperb E R, Lopes K L, Fett J P. Zinc-induced facilitator-like family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC Plant Biol, 2011, 11: 20.
doi: 10.1186/1471-2229-11-20 pmid: 21266036
[5] Reddy V S, Shlykov M A, Castillo R, Sun E I, Saier M H J. The major facilitator superfamily (MFS) revisited. FEBS J, 2012, 279: 2022-2035.
doi: 10.1111/j.1742-4658.2012.08588.x pmid: 22458847
[6] Che J, Yokosho K, Yamaji N, Ma J F. A vacuolar phytosiderophore transporter alters iron and zinc accumulation in polished rice grains. Plant Physiol, 2019, 181: 276-288.
doi: 10.1104/pp.19.00598 pmid: 31331995
[7] Eser O P, Ocak U, Sherchan P, Zhang J H, Tang J. Insights into major facilitator superfamily domain-containing protein-2a (Mfsd2a) in physiology and pathophysiology. What do we know so far? J Neurosci Res, 2020, 98: 29-41.
doi: 10.1002/jnr.24327 pmid: 30345547
[8] Diao J, Li S X, Ma L, Zhang P, Bai J Y, Wang J Q, Ma X Q, Ma W. Genome-wide analysis of major facilitator superfamily and its expression in response of poplar to Fusarium oxysporum. Front Genet, 2021, 12: 769888.
[9] Niño-González M, Novo-Uzal E, Richardson D N, Barros P M, Duque P. More transporters, more substrates: the Arabidopsis major facilitator superfamily revisited. Mol Plant, 2019, 12: 1182-1202.
doi: S1674-2052(19)30234-5 pmid: 31330327
[10] Lorca G L, Barabote R D, Zlotopolski V, Tran C, Winnen B, Hvorup R N, Stonestrom A J, Nguyen E, Huang L W, Kim D S, Saier M H J. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. Biochim Biophys Acta, 2007, 1768: 1342-1366.
pmid: 17490609
[11] Saier M H J, Paulsen I T. Phylogeny of multidrug transporters. Semin Cell Dev Biol, 2001, 12: 205-213.
pmid: 11428913
[12] Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol, 2015, 25: 53-62.
doi: 10.1016/j.pbi.2015.04.005
[13] Remy E, Cabrito T R, Baster P, Batista R A, Teixeira M C, Friml J, Sá-Correia I, Duque P. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. Plant Cell, 2013, 25: 901-926.
doi: 10.1105/tpc.113.110353
[14] Kathare P K, Dharmasiri S, Vincill E D, Routray P, Ahmad I, Roberts D M, Dharmasiri N. Arabidopsis PIC30 encodes a major facilitator superfamily transporter responsible for the uptake of picolinate herbicides. Plant J, 2020, 102: 18-33.
doi: 10.1111/tpj.14608
[15] Wang M, Gong J, Bhullar N K. Iron deficiency triggered transcriptome changes in bread wheat. Comput Struct Biotechnol J, 2020, 18: 2709-2722.
doi: 10.1016/j.csbj.2020.09.009
[16] Haydon M J, Cobbett C S. A novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis. Plant Physiol, 2007, 143: 1705-1719.
doi: 10.1104/pp.106.092015
[17] Sharma S, Kaur G, Kumar A, Meena V, Kaur J, Pandey A K. Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress. BMC Mol Biol, 2019, 20: 22.
doi: 10.1186/s12867-019-0139-6 pmid: 31547799
[18] 程龙军, 葛红娟. Nicotianamine (NA)在植物中的作用. 植物生理学通讯, 2009, 45: 821-826.
Cheng L J, Ge H J. Roles of nicotianamine in plants. Plant Physiol Commun, 2009, 45: 821-826. (in Chinese with English abstract)
[19] Haydon M J, Kawachi M, Wirtz M, Hillmer S, Hell R, Krämer U. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell, 2012, 24: 724-737.
doi: 10.1105/tpc.111.095042
[20] Nozoye T, Nagasaka S, Kobayashi T, Takahashi M, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem, 2011, 286: 5446-5454.
doi: 10.1074/jbc.M110.180026 pmid: 21156806
[21] Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. J Biol Chem, 2015, 290: 27688-27699.
doi: 10.1074/jbc.M114.635193 pmid: 26432636
[22] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1): 11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Canesugar, 2005, (1): 11-16. (in Chinese with English abstract)
[23] 李文凤, 丁铭, 方琦, 黄应昆, 张仲凯, 董家红, 苏晓霞, 李婷婷. 云南甘蔗花叶病病原的初步鉴定. 中国糖料, 2006, (2): 4-7.
Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Preliminary identification of sugarcane mosaic pathogeny in Yunnan. Sugar Crops China, 2006, (2): 4-7. (in Chinese with English abstract)
[24] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus - long history but still a threat to industry. Crop Prot, 2012, 42: 74-78.
[25] Putra L K, Kristini A, Achadian E M, Damayanti T A. Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Technol, 2014, 16: 392-399.
doi: 10.1007/s12355-013-0279-9
[26] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015, 46: 609-613.
Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015, 46: 609-613. (in Chinese with English abstract)
[27] 梁姗姗, 罗群, 陈如凯, 高三基. 引起甘蔗花叶病的病原分子生物学进展. 植物保护学报, 2017, 44: 363-370.
Liang S S, Luo Q, Chen R K, Gao S J. Advances in researches on molecular biology of viruses causing sugarcane mosaic. Acta Phytophy Sin, 2017, 44: 363-370 (in Chinese with English abstract).
[28] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018, 48: 389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018, 48: 389-394. (in Chinese with English abstract)
[29] 沈林波, 吴楠楠, 冯小艳, 熊国如, 赵婷婷, 王文治, 王俊刚, 张树珍. 52个甘蔗品种在广西受病毒侵染情况. 热带作物学报, 2020, 41(1): 116-126.
Shen L B, Wu N N, Feng X Y, Xiong G R, Zhao T T, Wang W Z, Wang J G, Zhang S Z. Virus infection situation of fifty-two sugarcane varieties in Guangxi. Chin J Trop Crops, 2020, 41(1): 116-126. (in Chinese with English abstract)
[30] 杨荣仲, 周会, 肖祎, 吕达, 廖红香, 陈道德, 刘昔辉, 雷敬超, 林垠孚. 甘蔗主要亲本自然条件下抗甘蔗花叶病测定. 中国糖料, 2020, 42(2): 47-52.
Yang R Z, Zhou H, Xiao Y, Lyu D, Liao H X, Chen D D, Liu X H, Lei J C, Lin Y F. Testing on sugarcane mosaic resistance of sugarcane major parents under field conditions. Sugar Crops China, 2020, 42(2): 47-52. (in Chinese with English abstract)
[31] Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell C A, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynth Res, 2020, 150: 279-294.
doi: 10.1007/s11120-019-00706-w
[32] Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Present status of the sugarcane mosaic subgroup of potyviruses. Arch Virol, 1992, 5: 363-373.
[33] Shukla D D, Tosic M, Jilka J, Ford R E, Toler R W, Langham M A C. Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal antibodies directed towards virus-specific N-termini of coat proteins. Phytopathology, 1989, 79: 223-229.
doi: 10.1094/Phyto-79-223
[34] Xu D, Park J W, Mirkov T E, Zhou G. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008, 153: 1031-1039.
doi: 10.1007/s00705-008-0072-3 pmid: 18438601
[35] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017, 33(7): 22-28.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-0084
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017, 33(7): 22-28. (in Chinese with English abstract)
[36] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016, 45(2): 135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016, 45(2): 135-140. (in Chinese with English abstract)
[37] 翟玉山, 彭磊, 杨永庆, 邓宇晴, 程光远, 郑艳茹, 徐景升. 甘蔗条纹花叶病毒HC-ProP3N-PIPOCPVPg基因酵母双杂交诱饵表达载体的构建及自激活检测. 华北农学报, 2016, 31(1): 83-89.
doi: 10.7668/hbnxb.2016.01.014
Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S. Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg from Sugarcane streak mosaic virus for yeast two hybrid system. Acta Agric Boreali-Sin, 2016, 31(1): 83-89. (in Chinese with English abstract)
[38] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus (SCSMV). Trop Plant Biol, 2017, 10: 45-55.
doi: 10.1007/s12042-016-9183-2
[39] Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S. Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun, 2015, 466: 312-318.
doi: 10.1016/j.bbrc.2015.09.015
[40] Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991, 32: 269-296.
pmid: 1657820
[41] Hall J S, Adams B, Parsons T J, French R, Lane L C, Jensen S G. Molecular cloning, sequencing, and phylogenetic relationships of a new Potyvirus: Sugarcane streak mosaic virus, and a reevaluation of the classification of the Potyviridae. Mol Phylogenet Evol, 1998, 10: 323-332.
pmid: 10051385
[42] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus (SCSMV). Arch Virol, 2011, 156: 2101-2104.
doi: 10.1007/s00705-011-1090-0
[43] Xu D, Zhou G, Xie Y, Mock R, Li R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010, 40: 432-439.
doi: 10.1007/s11262-010-0457-8 pmid: 20162446
[44] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018, 102: 2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[45] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus (SCMV) in Nigeria. Plant Dis, 2019, 103: 818-824.
doi: 10.1094/PDIS-08-18-1445-RE pmid: 30806574
[46] Cheng G, Dong M, Xu Q, Peng L, Yang Z T, Wei T, Xu J. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017, 7: 9868.
doi: 10.1038/s41598-017-10497-6
[47] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019, 20: 3867.
doi: 10.3390/ijms20163867
[48] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020, 46: 1722-1733.
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020, 46: 1722-1733. (in Chinese with English abstract)
[49] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作. 作物学报, 2021, 47: 1522-1530.
doi: 10.3724/SP.J.1006.2021.04194
Zhang H, Cheng G Y, Yang Z T, Liu S X, Shang H Y, Huang G Q, Xu J S. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2. Acta Agron Sin, 2021, 47: 1522-1530. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04194
[50] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究. 作物学报, 2021, 47: 94-103.
doi: 10.3724/SP.J.1006.2021.04156
Zhang H, Cheng G Y, Yang Z T, Liu S X, Shang H Y, Zhao H, Xu J S. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection. Acta Agron Sin, 2021, 47: 94-103. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04156
[51] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作研究. 作物学报, 2022, 48: 332-341.
doi: 10.3724/SP.J.1006.2022.14001
Yang Z T, Liu S X, Cheng G Y, Zhang H, Zhou Y S, Shang H Y, Huang G Q, Xu J S. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2. Acta Agron Sin, 2022, 48: 332-341. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2022.14001
[52] Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H, Laliberté J F. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiol, 2013, 4: 351.
doi: 10.3389/fmicb.2013.00351 pmid: 24409170
[53] Jiang J, Patarroyo C, Garcia Cabanillas D, Zheng H, Laliberté J F. The vesicle-forming 6K2 protein of Turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. J Virol, 2015, 89: 6695-6710.
doi: 10.1128/JVI.00503-15 pmid: 25878114
[54] Lõhmus A, Varjosalo M, Mäkinen K. Protein composition of 6K2-induced membrane structures formed during Potato virus A infection. Mol Plant Pathol, 2016, 17: 943-958.
doi: 10.1111/mpp.12341
[55] Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2019, 225: 2122-2139.
doi: 10.1111/nph.16285
[56] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017, 175: 1732-1744.
doi: 10.1104/pp.17.01484
[57] Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019, 179: 507-518.
doi: 10.1104/pp.18.01342
[58] Li F F, Zhang C W, Tang Z W, Zhang L R, Dai Z J, Lyu S W, Li Y Z, Hou X L, Bernards M, Wang A M. A plant RNA virus activates selective autophagy in a UPR-dependent manner to promote virus infection. New Phytol, 2020, 228: 622-639.
doi: 10.1111/nph.16716
[59] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016, 46: 775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016, 46: 775-782 (in Chinese with English abstract).
[60] Xu J, Deng Y, Cheng G, Zhai Y, Peng L, Dong M, Xu Q, Yang Y. Sugarcane mosaic virus infection of model plants Brachypodium distachyon and Nicotiana benthamiana. J Intergr Agric, 2019, 18: 2294-2301.
[61] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014, 34: 676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014, 34: 676-681. (in Chinese with English abstract)
[62] Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014, 4: 7042.
doi: 10.1038/srep07042 pmid: 25391499
[63] Xu L, Zhao H Y, Wan R J, Liu Y, Xu Z, Tian W, Ruan W Y, Wang F, Deng M J, Wang J M, Dolan L, Luan S W, Xue S W, Yi K K. Identification of vacuolar phosphate efflux transporters in land plants. Nat Plants, 2019, 5: 84-94.
doi: 10.1038/s41477-018-0334-3 pmid: 30626920
[64] 郭家文, 张跃彬, 刘少春, 罗志明, 崔雄维. 硼钼锌单施及配施对甘蔗产量和品质的影响. 西南农业学报, 2009, 22: 716-720.
Guo J W, Zhang Y B, Liu S C, Luo Z M, Cui X W. Effects of sole fertilization of B, Mo, Zn and combined application on the stem yield and quality of sugarcane. J South Agric, 2009, 22: 716-720. (in Chinese with English abstract)
[65] Balafrej H, Bogusz D, Triqui Z A, Guedira A, Bendaou N, Smouni A, Fahr M. Zinc hyperaccumulation in plants: a review. Plants (Basel), 2020, 9: 562.
[66] Kaur H, Garg N. Zinc toxicity in plants: a review. Planta, 2021, 253: 129.
doi: 10.1007/s00425-021-03642-z pmid: 34043068
[67] Sinclair S A, Krämer U. The zinc homeostasis network of land plants. Biochim Biophys Acta, 2012, 1823: 1553-1567.
doi: 10.1016/j.bbamcr.2012.05.016 pmid: 22626733
[68] Yruela I. Transition metals in plant photosynthesis. Metallomics, 2013, 5: 1090-1109.
doi: 10.1039/c3mt00086a pmid: 23739807
[69] Fraile A, García-Arenal F. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010, 76: 1-32.
doi: 10.1016/S0065-3527(10)76001-2 pmid: 20965070
[70] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015, 53: 45-66.
doi: 10.1146/annurev-phyto-080614-120001 pmid: 25938276
[71] 李琳, 丁峰, 潘介春, 张树伟, 黄幸, 王金英, 王颖, 李浩然, 徐炯志, 彭宏祥, 何新华. 植物锌指蛋白转录因子家族研究进展. 热带农业科学, 2020, 40(2): 65-75.
Li L, Ding F, Pan J C, Zhang S W, Huang X, Wang J Y, Wang Y, Li H R, Xu J Z, Peng H X, He X H. Research progress on family of plant Zinc-Finger protein transcription factors. Chin J Trop Crops, 2020, 40(2): 65-75. (in Chinese with English abstract)
[1] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[2] 许彬, 曹绍玉, 苏甜, 彭梦玲, 吕霞, 李振林, 张国平, 许俊强. 结球甘蓝类钙调蛋白CMLs与花粉萌发NPG1及NPGRs相互作用研究[J]. 作物学报, 2022, 48(11): 2934-2944.
[3] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[4] 李兰兰, 母丹, 严雪, 杨陆可, 林文雄, 方长旬. OsPAL2;3对水稻化感抑制稗草能力的调控作用[J]. 作物学报, 2021, 47(2): 197-209.
[5] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[6] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究[J]. 作物学报, 2021, 47(1): 94-103.
[7] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
[8] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究[J]. 作物学报, 2020, 46(11): 1722-1733.
[9] 李媚娟,苏良辰,刘帅,李晓云,李玲. 花生AhHDA1互作蛋白AhGLK的筛选及特性分析[J]. 作物学报, 2017, 43(02): 218-225.
[10] 刘荣榜,陈明,郭萌萌,司青林,高世庆,徐兆师,李连城,马有志,尹钧. 拟南芥H+-焦磷酸化酶AVP1互作小GTP结合蛋白AtRAB的特性鉴定与功能分析[J]. 作物学报, 2014, 40(10): 1756-1766.
[11] 张小红,许鹏博,郭萌萌,徐兆师,李连城,陈明,马有志. 拟南芥G蛋白α亚基GPA1互作蛋白铜离子结合蛋白AtBCB的鉴定及功能分析[J]. 作物学报, 2013, 39(11): 1952-1961.
[12] 汪信东,陈亮,张增艳. 抗小麦黄矮病相关蛋白激酶TiDPK1与BYDV外壳蛋白的互作[J]. 作物学报, 2013, 39(10): 1720-1726.
[13] 汤青林,许俊强,宋明,王志敏. 芥菜AP1基因体外表达及其与FLC相互作用的验证[J]. 作物学报, 2012, 38(07): 1328-1333.
[14] 邱志刚, 徐兆师, 郑天慧, 李连城, 陈明, 马有志. 小麦ERF转录因子W17互作蛋白的筛选和解析[J]. 作物学报, 2011, 37(05): 803-810.
[15] 宋健民,戴双,李豪圣,刘爱峰,程敦公,楚秀生,Ian J Tetlow,Michael J Emes. 小麦胚乳14-3-3蛋白的表达及其淀粉体淀粉合成酶的互作[J]. 作物学报, 2009, 35(8): 1445-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[10] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .