作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3091-3107.doi: 10.3724/SP.J.1006.2022.11113
李晓瑜(), 方小梅(), 伍浩天, 王莹倩, 刘洋, 唐恬, 王于栋, 吴银环, 岳林清, 张瑞丰, 崔静斌, 张建, 易泽林()
LI Xiao-Yu(), FANG Xiao-Mei(), WU Hao-Tian, WANG Ying-Qian, LIU Yang, TANG Tian, WANG Yu-Dong, WU Yin-Huan, YUE Lin-Qing, ZHANG Rui-Feng, CUI Jing-Bin, ZHANG Jian, YI Ze-Lin()
摘要:
分析苦荞(Fagopyrum tataricum)种质资源遗传多样性和群体遗传结构, 筛选与苦荞农艺性状关联的分子标记, 为苦荞杂交组合的亲本选配及分子标记辅助育种提供依据。本试验以318份苦荞种质资源为材料, 分别于2019年和2020年对其主要农艺性状(株高、主茎分枝数、主茎节数和千粒重)及籽粒特征值(粒长、粒宽、籽粒长宽比、籽粒面积、籽粒周长、籽粒直径、籽粒圆度)进行了表型鉴定, 并通过分析2年的表型数据计算出BLUP值。77对具有良好多态性的SSR标记扫描群体, 共检测到293个等位变异, 基因多样性均值为0.52, PIC值平均为0.46; 聚类分析将318份苦荞资源分成4大类, 平均遗传距离0.44; 群体结构分析表明该群体可分为2个亚群。上述SSR标记分别对这11个表型性状进行了关联分析, 共检测有54个SSR标记与苦荞种质资源农艺性状极显著关联, 表型变异解释率为1.77%~16.40%, 其中25个标记在3个环境中均检测到, 47个SSR标记同时和2个或以上的表型性状呈极显著关联。该研究结果对苦荞相关性状的候选基因挖掘和高产苦荞分子标记辅助育种具有重要意义。
[1] | 丁颖. 中国作物原始. 农声, 1921, 82-85. |
Ding Y. Chinese crop primitiveness. Agric Inform, 1921, 82-85. (in Chinese with English abstract) | |
[2] | 黄凯丰, 李振宙, 王炎, 周良, 吴兴慧, 李振东. 我国荞麦高产栽培生理研究进展. 贵州师范大学学报(自然科学版), 2019, 37(1): 115-120. |
Huang K F, Li Z Z, Wang Y, Zhou L, Wu X H, Li Z D. Research progress on physiology of buckwheat under high-yield cultivation. J Guizhou Norm Univ (Nat Sci Edn), 2019, 37(1): 115-120. (in Chinese with English abstract) | |
[3] | 范昱, 丁梦琦, 张凯旋, 杨克理, 唐宇, 张宗文, 方沩, 严俊, 周美亮. 荞麦种质资源概况. 植物遗传资源学报, 2019, 20: 813-828. |
Fan Y, Ding M Q, Zhang K X, Yang K L, Tang Y, Zhang Z W, Fang W, Yan J, Zhou M L. Germplasm resource of the genus Fagopyrum Mill. J Plant Genet Resour, 2019, 20: 813-828. (in Chinese with English abstract) | |
[4] |
Kishore G, Gupta S, Pandey A. Assessment of population genetic diversity of Fagopyrum tataricum using SSR molecular marker. Biochem System Ecol, 2012, 43: 32-41.
doi: 10.1016/j.bse.2012.02.018 |
[5] | 杨学文, 丁素荣, 胡陶, 刘迎春, 张晓荣, 生国利. 104份苦荞种质的遗传多样性分析. 作物杂志, 2013, (6): 13-17. |
Yang X W, Ding S R, Hu T. Liu Y C, Zhang X R, Sheng G L. Genetic diversity of 104 Tatary buckwheat accessions. Crops, 2013, (6): 13-17. (in Chinese with English abstract) | |
[6] | 杜晓磊. 苦荞SSR和AFLP遗传图谱构建及其重要农艺性状的QTL分析. 山西大学硕士学位论文, 山西太原, 2013. |
Du X L. Construction of Tartary Buckwheat Genetic Map with SSR and AFLP Markers and QTL Analysis for Important Agronomic Traits. MS Thesis of Shanxi University, Taiyuan, Shanxi, China, 2013. (in Chinese with English abstract) | |
[7] |
Hou S Y, Sun Z X, Ling H B, Xu B, Zhang B, Wang X C, Han Y H, Zhang L J, Qiao Z J, Li H Y. Genetic diversity of buckwheat cultivars (Fagopyrum tartaricum Gaertn.) assessed with SSR markers developed from genome survey sequences. Plant Mol Biol Rep, 2016, 34: 233-241.
doi: 10.1007/s11105-015-0907-5 |
[8] | 马名川, 张丽君, 刘璋, 刘龙龙. 基于SSR标记的山西省不同地区苦荞遗传多样性分析. 山西农业大学学报(自然科学版), 2021, 41(3): 25-31. |
Ma M C, Zhang L J, Liu Z, Liu L L. Analysis of genetic diversity of tartary buckwheat from different regions of Shanxi province based on SSR marker. J Shanxi Agric Univ (Nat Sci Edn), 2021, 41(3): 25-31. (in Chinese with English abstract) | |
[9] | Zhao S J, Zhu H J, Lu X Q, Lu X Q, He N, Liu W G. Studies on DNA finger-printing and genetic diversity of seedless watermelon (Citrullus lanatus) varieties using core simple sequence repeat (SSR) markers. J Agric Biotechnol, 2014, 22: 188-194. |
[10] |
Flint-Garcia S A, Thomsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357-374.
pmid: 14502995 |
[11] | Lu H, Zhang D, Zhang L J, Wang R J, Shang X D, Tan Q. Association analysis of five agronomic traits with SSR markers in Flammulina velutipes germplasm. J Agric Biotechnol, 2015, 23: 96-106. |
[12] |
Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwarf 8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28: 286-289.
pmid: 11431702 |
[13] |
Aranzana M J, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C L, Toomajian C, Traw B, Zheng H G, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet, 2005, 1: 60.
pmid: 16292355 |
[14] |
Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars. Mol Breed, 2007, 19: 341-356.
doi: 10.1007/s11032-006-9066-6 |
[15] |
张军, 赵团结, 盖钧镒. 大豆育成品种农艺性状 QTL与SSR 标记的关联分析. 作物学报, 2008, 34: 2059-2069.
doi: 10.3724/SP.J.1006.2008.02059 |
Zhang J, Zhao T J, Gai J Y. Association analysis of agronomic trait QTLs with SSR markers in released soybean cultivars. Acta Agron Sin, 2008, 34: 2059-2069 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.02059 |
|
[16] | 徐芦, 高金锋, 王鹏科, 高小丽, 冯佰利. 灰色关联分析在苦荞区试产量性状上的应用. 种子, 2010, 29(6): 64-66. |
Xu L, Gao J F, Wang P K, Gao X L, Feng B L. Application of gray correlation analysis on yield characters in regional trials of buckwheat. Seed, 2010, 29(6): 64-66. (in Chinese with English abstract) | |
[17] | 张智峰, 韩小平, 秦刚. 近红外光谱结合主成分分析和灰色关联分析的苦荞产地溯源. 食品与发酵工业, 2019, 45(19): 266-269. |
Zhang Z F, Han X P, Qin G. Origin tracing of tartary buckwheat by near infrared spectroscopy combined with principal component analysis and grey relational analysis. Food Ferment Indust, 2019, 45(19): 266-269. (in Chinese with English abstract) | |
[18] | 吕丹. 苦荞种质资源产量性状和籽粒黄酮含量与SSR标记的关联分析. 贵州师范大学硕士学位论文, 贵州贵阳, 2020. |
Lyu D. Association Analysis of Yield Traits and Flavonoids Content in Grains with SSR Markers in Tartary Buckwheat Germplasms. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2020. (in Chinese with English abstract) | |
[19] |
Zhang K X, He M, Fan Y, Zhao H, Gao B, Yang K L, Li F L, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Meglič V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo S H, Georgiev M I, Zhou M L. Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genom Biol, 2021, 22: 23.
doi: 10.1186/s13059-020-02217-7 |
[20] | 张宗文, 林汝法. 荞麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007. |
Zhang Z W, Lin R F. Description Specification and Data Standard for Buckwheat Germplasm Resources. Beijing: China Agriculture Press, 2007. | |
[21] |
Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D M, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99.
doi: 10.1007/s10681-005-4629-x |
[22] |
Fang X M, Huang K H, Nie J, Zhang Y L, Zhang Y K, Li Y S, Wang W W, Xu X, Ruan R W, Yuan X H, Zhang Z S, Yi Z L. Genome-wide mining, characterization, and development of microsatellite markers in tartary buckwheat (Fagopyrum tataricum Garetn.). Euphytica, 2019, 215: 183.
doi: 10.1007/s10681-019-2502-6 |
[23] | 梁龙兵. 苦荞遗传群体主要农艺性状的遗传及其SSR分子标记研究. 贵州师范大学硕士学位论文, 贵州贵阳, 2016. |
Liang L B. The Study of Main Agronomic Traits and SSR Molecular Markers in Genetic Population of Tartary Buckwheat. MS Thesis of Guizhou Normal University, Guiyang, Guizhou, China, 2016 (in Chinese with English abstract) | |
[24] | Bates D, Machler M, Bolker B M, Walker S C. Fitting linear mixed-effects models using lme4. J Stat Softw, 2015, 67: 1-48. |
[25] |
Liu K, Muse S. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128-2129.
pmid: 15705655 |
[26] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[27] |
Hubisz M J, Daniel F, Matthew S, Pritchard J. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour, 2010, 9: 1322-1332.
doi: 10.1111/j.1755-0998.2009.02591.x |
[28] |
Earl D A, Vonholdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4: 359-361.
doi: 10.1007/s12686-011-9548-7 |
[29] |
Bradbury P J, Zhang Z W, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829 |
[30] |
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol, 2005, 14: 2611-2620.
pmid: 15969739 |
[31] | 周长军. 大豆有性杂交F2产量性状的遗传力分析. 黑龙江农业科学, 2006, 6(6): 14-15. |
Zhou C J. The heritability analysis and genetic correlation for yield traits in hybridization F2 generation of soybean. Heilongjiang Agric Sci, 2006, 6(6): 14-15 (in Chinese with English abstract) | |
[32] | 吴渝生. 荞麦主要农艺性状的遗传相关分析. 云南农业大学学报, 1996, 11: 258-262. |
Wu Y S. Genetic correlation of main agronomic character on buckwheat. J Yunnan Agric Univ, 1996, 11: 258-262 (in Chinese with English abstract) | |
[33] | 罗燕, 敖学成. 秋播苦荞麦单株性状与株产种量的相关通径分析. 牧草与饲料, 2012, 6(2): 31-34. |
Luo Y, Ao X C. Correlation coefficient path analysis on the plant traits and seed generating amount of tartary buckwheat in autumn. J forag feed, 2012, 6(2): 31-34 (in Chinese with English abstract). | |
[34] | 潘凡, 石桃雄, 陈其皎, 孟子烨, 梁庆刚, 陈庆富. 苦荞种质主要农艺性状的变异及其对单株粒重的贡献研究. 植物科学学报, 2015, 33: 829-839. |
Pan F, Shi T X, Meng Z Y, Liang Q G, Chen Q F. Variation in major agronomic traits and its contribution to grain weight per plant in Tartary buckwheat germplasm. Plant Sci J, 2015, 33: 829-839. (in Chinese with English abstract) | |
[35] | 吕丹, 黎瑞源, 郑冉, 郑俊青, 朱丽伟, 石桃雄, 陈庆富. 213份苦荞种质资源主要农艺性状分析及高产种质筛选. 南方农业学报, 2020, 51: 2429-2439. |
Lyu D, Li R Y, Zheng R, Zheng J Q, Zhu L W, Shi T X, Chen Q F. Main agronomic traits and selection of high seed yield germplasms in 213 tartary buckwheat materials. J Southern Agric, 2020, 51: 2429-2439. (in Chinese with English abstract) | |
[36] |
卢媛, 艾为大, 韩晴, 王义发, 李宏杨, 瞿玉玑, 施标, 沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析. 作物学报, 2019, 45: 214-224.
doi: 10.3724/SP.J.1006.2019.83008 |
Lu Y, Ai W D, Han Q, Wang Y F, Li H Y, Qu Y J, Shi B, Shen X F. Genetic diversity and population structure analysis by SSR markers in waxy maize. Acta Agron Sin, 2019, 45: 214-224. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83008 |
|
[37] |
张善磊, 岳红亮, 赵春芳, 陈涛, 张亚东, 周丽慧, 赵凌, 梁文化, 王才林. 粳稻栽培品种中淀粉合成相关基因的等位变异及群体结构分析. 华北农学报, 2018, 33: 116-122.
doi: 10.7668/hbnxb.2018.06.016 |
Zhang S L, Yue H L, Zhao C F, Chen T, Zhang Y D, Zhou L H, Zhao L, Liang W H, Wang C L. Allelic variation of starch synthesis related genes and population structure in japonica rice cultivars. Acta Agric Boreali-Sin, 2018, 33: 116-122. (in Chinese with English abstract) | |
[38] | 张海雯, 巩檑, 马斯霜, 甘晓燕, 宋玉霞. 基于SSR标记的马铃薯种质遗传多样性及群体结构分析. 分子植物育种, 2020, 18: 4144-4152. |
Zhang H W, Gong L, Ma S S, Gan X Y, Song Y X. Genetic diversity and population structure analysis of potato (Solanum tuberosum) germplasm based on SSR markers. Mol Plant Breed, 2020, 18: 4144-4152. (in Chinese with English abstract) | |
[39] | 邢泽农, 蒋雷, 贺道华, 邢宏宜, 雷忠萍. 陕棉抗病种质及其衍生品种的遗传多样性与群体结构研究. 西北植物学报, 2016, 36: 1551-1559. |
Xing Z N, Jiang L, He D H, Xing H Y, Lei Z P. Genetic diversity and population structure of disease-resistance cotton cultivars developed in Shaanxi and their descendants by mapped SSRs. Acta Agric Boreali-Occident Sin, 2016, 36: 1551-1559. (in Chinese with English abstract) | |
[40] | 俞渭江. 最优线性无偏预测(BLUP)的原理及其应用. 贵州农学院从刊, 1993, 2: 1-14. |
Yu W J. The principles of best linear unbiased production (BLUP) and its application. Coll Guizhou Agric, 1993, 2: 1-14. (in Chinese with English abstract) | |
[41] | Wang L Y, He S P, Dia S, Sun G, Liu X Y, Wang X Y, Pan Z E, Jia Y H, Wang L R, Pang B Y, Sun X Z, Song X L, Du X M. Alien genomic introgressions enhanced fiber strength in upland cotton (Gossypium hirsutum L.). Indust Crops Prod, 2021, 159: 113028. |
[42] |
韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析. 作物学报, 2021, 47: 438-450.
doi: 10.3724/SP.J.1006.2021.04063 |
Han B, Wang X W, Li B Q, Yu Y, Tian Q, Yang X Y. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.). Acta Agron Sin, 2021, 47: 438-450. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04063 |
|
[43] |
Zhang L, Li X X, Ma B, Gao Q, Du H L, Han Y H, Li Y, Cao Y H, Qi M, Zhu Y X, Lu H W, Ma M C, Liu L L, Zhou J P, Nan C H, Qin Y J, Wang J, Lin C, Liu H M, Liang C Z, Qiao Z J. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Mol Plant, 2017, 10: 1224-1237.
doi: 10.1016/j.molp.2017.08.013 |
[1] | 徐凯, 郑兴飞, 张红燕, 胡中立, 宁子岚, 李兰芝. 基于NCII遗传交配设计的籼稻抽穗期全基因组关联分析[J]. 作物学报, 2023, 49(1): 86-96. |
[2] | 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152. |
[3] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[4] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[5] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[6] | 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821. |
[7] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[8] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[9] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 秦文萱, 鲍建喜, 王彦博, 马雅杰, 龙艳, 李金萍, 董振营, 万向元. 玉米叶夹角性状的全基因组关联分析与关键位点优异等位变异挖掘[J]. 作物学报, 2022, 48(11): 2691-2705. |
[12] | 刘玉玲, 张红岩, 滕长才, 周仙莉, 侯万伟. 蚕豆SSR标记遗传多样性及与淀粉含量的关联分析[J]. 作物学报, 2022, 48(11): 2786-2796. |
[13] | 李婷, 王亚鹏, 董远, 郭瑞士, 李冬梅, 唐雅伶, 张兴华, 薛吉全, 徐淑兔. 基于杂交群体解析玉米籽粒大小相关性状及其配合力的分子遗传机制[J]. 作物学报, 2022, 48(10): 2451-2462. |
[14] | 李建领, 公丹, 王素华, 陈红霖, 程须珍, 熊涛, 王丽侠. 豇豆SNP高密度遗传图谱构建及重要农艺性状QTL定位[J]. 作物学报, 2022, 48(10): 2475-2482. |
[15] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
|