欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 423-436.doi: 10.3724/SP.J.1006.2022.11017

• 耕作栽培·生理生化 • 上一篇    下一篇

冬小麦-夏玉米轮作“双晚”种植模式下的品种匹配与资源效率

闫岩(), 张钰石, 刘础荣, 任丹阳, 刘洪润, 刘雪晴, 张明才*(), 李召虎   

  1. 植物生长调节剂教育部工程研究中心 / 中国农业大学农学院, 北京 100193
  • 收稿日期:2021-02-22 接受日期:2021-04-26 出版日期:2022-02-12 网络出版日期:2021-07-06
  • 通讯作者: 张明才
  • 作者简介:E-mail: 1319817475@qq.com, Tel: 010-62733453
  • 基金资助:
    本研究由国家重点研发计划项目资助(2017YFD0300410)

Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system

YAN Yan(), ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai*(), LI Zhao-Hu   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
  • Received:2021-02-22 Accepted:2021-04-26 Published:2022-02-12 Published online:2021-07-06
  • Contact: ZHANG Ming-Cai
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300410)

摘要:

探索适宜于麦玉“双晚”种植模式下抗逆丰产稳产的冬小麦夏玉米品种组合特性及其与自然资源匹配特征, 对于保障冬小麦夏玉米抗逆丰产高效生产具有重要意义。本研究于2017—2019年通过田间试验, 选用华北平原主推的冬小麦与夏玉米品种各8个, 设置区域麦玉“双晚”接茬模式和水分控制处理, 通过水分利用效率、籽粒灌浆特征、生育进程、周年光温水资源利用效率等综合分析与评价, 探明宜于“双晚”模式下麦玉品种组配特征及其资源利用效率。结果表明, 在常规节水灌溉和生育期雨养模式下冀麦325、石麦15和济麦22的产量在两个生长季均高于供试品种平均产量, 其中冀麦325和石麦15的抗旱系数均高于济麦22; 同时, 济麦22、冀麦325和石麦15具有较高的灌浆速率、穗粒数和粒重, 其高稳系数在不同灌溉模式下均高于供试品种平均值。在供试玉米品种中, 登海605、伟科702、MC670、农华816的产量和高稳系数均高于供试品种的平均值, 其中MC670、登海605、先玉335的灌浆速率在2个生长季均高于供试品种的平均值, 而迪卡517和先玉335在供试品种中收获期籽粒含水量最低、平均脱水速率最高。基于品种丰产稳产性、抗旱性、灌浆特征和脱水特征的综合分析, 筛选出周年产量和资源利用效率最高的品种组合为冀麦325-MC670, 2年较对照济麦22-郑单958品种组合周年产量提高17.2%和17.9%、光、温和灌溉水利用效率分别提高18.6%和20.0%、18.1%和18.9%、17.4%和18.1%, 经济效益分别增加8800元 hm -2和9600元 hm -2; 为适应麦玉周年全程机械化管理模式, 玉米品种应组配脱水快、籽粒收获含水量低的迪卡517或先玉335, 与济麦22-郑单958组合相比, 周年产量两年分别提高4.7%和14.4%、光温和灌溉水利用效率分别提高5.6%和16.3%、4.7%和15.4%, 5.0%和14.6%, 经济效益增加2080元 hm -2和7080元 hm -2。综上所述, 在麦玉“双晚”模式下, 通过优化品种组合, 与当前主推品种组合相比, 能进一步实现周年产量和资源利用效率的协同提升。

关键词: 麦玉“双晚”种植模式;, 品种匹配, 籽粒灌浆, 周年产量, 资源利用效率

Abstract:

It is of great significance that exploring the characteristics of wheat-maize varieties combination suitable for stress resistance, high yield, and stable yield under the “double delay” system and their matching properties with natural resources, for ensuring the high yield and high efficiency production of winter wheat and summer maize in this region. In this study, field experiments were conducted from 2017 to 2019. Eight winter wheat and eight summer maize varieties were the main varieties in the North China Plain under winter wheat-summer maize “double delay” system with different irrigation treatments. Based on the analysis and evaluation of water use efficiency, grain filling characteristics, growth process, annual light, temperature, and water use efficiency, etc., the characteristics of wheat-maize varieties combination and resource use efficiency under the “double delay” system of winter wheat and summer maize were explored. The results suggested that among the tested wheat varieties, the yields of Jimai 325, Shimai 15, Nongda 3486, and Jimai 22 under conventional water-saving irrigation and rain-fed mode were higher than the average yield of the tested varieties druing the two growing seasons. In addition, the drought resistance index of Jimai 325 and Shimai 15 were higher than that of Jimai 22. Meanwhile, the grain-filling rate, grain number per spike, grain weight, and high stability coefficients of Jimai 22, Jimai 325, and Shimai 15 were higher than the mean of the tested varieties under different irrigation modes. Among the tested maize variaties, the yield and high stability coefficients of Denghai 605, Weike 702, MC670, and Nonghua 816 were all higher than the means of the tested varieties. The grain-filling rate of MC670, Denghai 605, and Xianyu 335 were higher than the means of the tested varieties during the two growing seasons. While, Dika 517 and Xianyu 335 had the lowest grain water content at harvest stage but the highest average dehydration rate among the tested varieties. Based on the comprehensive analysis of the yield and yield stability, drought resistance, grain-filling properties, and dehydration characteristics, the variety combination of Jimai 325-MC670 was selected with the highest annual yield and resource use efficiency. Compared with the local control combination of Jimai 22-Zhengdan 958, the annual yield increased by 17.2% and 17.9%, the light, temperature and irrigation water use efficiency increased by 18.6% and 20.0%, 18.1% and 18.9%, 17.4% and 18.1%, and increased economic benefit 8800 Yuan hm -2 and 9600 Yuan hm -2, respectively; to fit the whole-process mechanized management mode of wheat-maize double cropping system, maize could use varieties with fast dehydration rate and low grain water content when harvest, such as Dika 517 or Xianyu 335. Compared with the current local combination of Jimai 22-Zhengdan 958, this combination could increase the annual yield by 4.7% and 14.4%, and increase the light, temperature, and irrigation water use efficiency by 5.6% and 16.3%, 4.7% and 15.4%, 5.0% and 14.6%, and increased economic benefit by 2080 Yuan hm -2 and 7080 Yuan hm -2, respectively. In summary, optimizing the wheat-maize variety combination under the “double delay” cropping system can further improve the annual yield and resource use efficiency synergistically compared with the local staple wheat-maize variety combination.

Key words: wheat-maize ‘double-delay’ cropping system;, variety matching, grain-filling, annual yield, resource use efficiency

图1

2017-2018、2018-2019麦玉周年和近20年(2000-2020)平均的日均温和累积降水量"

表1

2017-2019不同灌溉处理下不同的小麦品种的产量、产量构成因素、灌溉水利用效率、抗旱指数及高稳系数"

处理
Treatment
品种
Variety
2017-2018 2018-2019 高稳系数
HSC
穗数
Spikes number (×104 hm‒2)
穗粒数
Kernel number
per spike
千粒重
Thousand- kernel
weight (g)
产量
GY
(t hm‒2)
灌溉水利用效率
IWUE
(kg m‒3)
抗旱
指数
DI
穗数
Spikes number (×104 hm‒2)
穗粒数
Kernel number
per spike
千粒重
Thousand-kernel
weight (g)
产量
GY
(t hm‒2)
灌溉水利用效率
IWUE
(kg m‒3)
抗旱指数
DI
W1 农大3486
Nongda 3486
605.7 a 31.3 bc 40.3 bc 7.6 bc 10.1 bc 0.94 606.6 a 31.7 bc 33.3 b 6.4 cd 8.5 cd 0.72 0.75
冀麦325 Jimai 325 614.4 a 38.2 a 41.0 b 9.6 a 12.8 a 1.39 614.6 a 38.3 a 35.9 b 8.2 ab 10.9 ab 1.08 0.97
邯麦16 Hanmai 16 617.4 a 35.9 ab 37.4 e 8.3 ab 11.1 ab 1.17 613.6 a 25.0 e 30.5 c 4.7 e 6.3 e 0.54 0.48
石麦15 Shimai 15 616.1 a 32.9 b 40.4 bc 8.2 bc 10.9 bc 1.10 615.7 a 37.0 a 38.1 a 8.7 a 11.6 a 1.35 0.92
济麦22 Jimai 22 616.1 a 29.1 c 42.3 a 7.7 bc 10.3 bc 1.00 615.6 a 31.7 bc 37.0 a 7.2 bc 9.6 bc 1.00 0.87
山农20 Shannong 20 619.5 a 23.2 d 42.7 a 6.2 cd 8.3 cd 0.70 618.0 a 24.5 e 37.6 a 5.7 de 7.6 de 0.66 0.68
鑫麦296 Xinmai 296 616.8 a 29.3 c 40.7 bc 7.4 bc 9.9 bc 1.08 618.0 a 29.1 d 37.1 a 6.6 cd 8.8 cd 0.89 0.79
农大399 Nongda 399 618.6 a 22.2 d 38.5 d 5.3 d 7.1 d 0.54 616.3 a 30.1 cd 37.2 a 6.9 cd 9.2 cd 0.91 0.60
平均值 Means 615.6 30.3 40.4 7.5 10.1 614.8 30.9 35.8 6.8 9.1 0.76
W3 农大3486
Nongda 3486
608.4 a 38.5 bc 40.8 bc 9.6 abc 4.3 abc 618.4 a 38.7 b 40.4 c 9.7 ab 4.3 ab 0.97
冀麦325 Jimai 325 617.6 a 40.2 ab 41.2 bc 10.2 a 4.5 a 624.1 a 41.3 a 40.5 c 10.7 a 4.8 a 1.03
邯麦16 Hanmai 16 618.5 a 37.5 bcd 39.2 d 9.1 bc 4.0 bc 618.2 a 30.3 d 36.7 d 6.9 c 3.1 c 0.66
石麦15 Shimai 15 618.6 a 36.2 cd 41.3 b 9.3 abc 4.1 abc 620.0 a 38.6 b 40.7 c 9.5 ab 4.2 ab 0.94
济麦22 Jimai 22 616.7 a 34.7 de 42.5 a 9.1 bc 4.0 bc 615.7 a 33 cd 42.7 b 8.9 abc 3.9 abc 0.89
山农20 Shannong 20 622.0 a 32.2 ef 42.8 a 8.6 cd 3.8 cd 620.5 a 30.3 d 43.9 a 8.1 bc 3.6 bc 0.83
鑫麦296 Xinmai 296 617.3 a 30.4 f 40.8 bc 7.7 d 3.4 d 620.4 a 30.4 d 43.8 a 8.5 abc 3.8 abc 0.76
农大399 Nongda 399 626.5 a 31.5 ef 40.0 cd 7.9 d 3.5 d 619.7 a 36.3 bc 39.5 c 8.7 abc 3.9 abc 0.78
平均值 Means 618.2 35.2 41.1 8.9 4.0 619.6 35.1 41.0 8.9 4.0 0.86

表2

常规灌溉条件下不同冬小麦品种籽粒灌浆特征参数"

品种
Variety
2017-2018 2018-2019
Gmax
(mg d-1 grain-1)
Gmean
(mg d-1 grain-1)
Tmax
(d)
P
(d)
Gmax
(mg d-1 grain-1)
Gmean
(mg d-1 grain-1)
Tmax
(d)
P
(d)
农大3486 Nongda 3486 2.27 c 1.53 ab 23.6 b 32.0 c 2.46 b 1.62 b 19.6 ab 31.7 c
冀麦325 Jimai 325 2.45 b 1.58 b 24.6 a 33.3 b 2.51 b 1.67 b 19.9 a 31.1 c
邯麦16 Hanmai 16 1.86 e 1.25 d 23.0 b 35.1 a 1.84 d 1.23 d 20.0 a 33.1 b
石麦15 Shimai 15 2.38 b 1.51 b 23.4 b 32.0 c 2.48 c 1.65 c 18.9 b 33.1 b
济麦22 Jimai 22 2.40 a 1.59 a 23.0 b 33.4 b 2.49 b 1.67 b 19.1 b 33.3 b
山农20 Shannong 20 2.48 a 1.65 a 23.1 b 33.7 b 2.51 b 1.65 b 20.0 a 33.7 b
鑫麦296 Xinmai 296 2.41 a 1.58 a 22.6 b 30.5 d 2.63 a 1.76 a 18.4 c 30.1 d
农大399 Nongda 399 2.12 d 1.40 c 21.4 c 31.2 d 2.17 c 1.43 c 18.3 c 32.8 a
平均值 Mean 2.30 1.51 23.1 32.7 2.39 1.59 19.3 32.4

表3

不同小麦品种产量、穗粒数、千粒重与灌浆特征的相关性分析"

GY KNP TKW Gmax Gmean P
GY 1
KNP 0.97 ** 1
TKW 0.13 -0.10 1
Gmax -0.04 -0.24 0.87 ** 1
Gmean 0.03 -0.18 0.89 ** 0.99 ** 1
P 0.43 0.45 -0.12 -0.47 -0.42 1

表4

2018-2019不同玉米品种的产量、产量构成因素及高稳系数"

品种
Variety
2018 2019 高稳系数
HSC
穗数
Ears number
(×104 hm-2)
穗粒数
Grain number
per ear
千粒重
1000-kernel weight (g)
产量
GY
(t hm-2)
穗数
Ears number
(×104 hm-2)
穗粒数
Grain number
per ear
千粒重
1000-kernel weight (g)
产量
GY
(t hm-2)
郑单958 Zhengdan 958 7.5 a 462.2 cd 344.1 de 10.1 c 7.7 a 547.3 ab 313.9 d 11.2 bc 0.84
浚单20 Xundan 20 7.5 a 505.4 a 338.9 e 10.9 b 7.8 a 493.3 c 323.2 cd 10.5 c 0.89
登海605 Denghai 605 7.4 a 507.5 a 356.7 c 11.2 b 7.8 a 570.9 a 343.7 b 13.0 a 0.93
伟科702 Weike 702 7.4 a 481.4 bc 368.7 b 11.0 b 7.8 a 555.0 ab 340.8 bc 12.5 ab 0.91
先玉335 Xianyu 335 7.4 a 447.9 d 354.5 cd 9.9 c 7.7 a 515.5 bc 369.9 a 12.1 ab 0.81
迪卡517 Dika 517 7.5 a 506.5 a 305.4 f 9.9 c 7.7 a 579.0 a 323.7 cd 12.3 ab 0.80
MC670 7.4 a 499.5 a 391.4 a 12.3 a 7.7 a 522.0 bc 379.5 a 13.0 a 1.04
农华816 Nonghua 816 7.4 a 510.1 a 355.5 cd 11.3 b 7.8 a 581.9 a 318.7 d 12.2 ab 0.95
平均值 Mean 7.4 490.1 351.9 10.8 7.8 545.6 339.2 12.1 0.90

表5

不同玉米品种的籽粒灌浆特征"

品种
Variety
2018 2019
Gmax
(mg d-1 grain-1)
Gmean
(mg d-1 grain-1)
Tmax
(d)
P
(d)
Gmax
(mg d-1 grain-1)
Gmean
(mg d-1 grain-1)
Tmax
(d)
P
(d)
郑单958 Zhengdan 958 11.53 c 7.83 c 22.9 a 50.5 a 11.75 c 7.93 bc 26.8 a 49.5 a
浚单20 Xundan 20 11.27 d 7.65 c 21.0 c 48.7 b 11.46 c 7.78 c 24.2 d 47.8 b
登海605 Denghai 605 11.61 c 7.89 bc 21.4 bc 49.8 a 12.18 b 8.24 b 25.1 c 48.0 b
伟科702 Weike 702 12.15 b 8.17 bc 22.1 b 49.6 a 11.99 bc 8.15 b 25.9 b 48.1 b
先玉335 Xianyu 335 12.28 b 8.34 b 21.8 b 46.7 c 12.98 a 8.76 a 25.3 bc 46.6 c
迪卡517 Dika 517 10.78 e 7.31 c 20.2 d 45.9 c 11.57 c 7.73 c 24.6 cd 46.0 c
MC670 13.07 a 8.87 a 20.9 c 48.5 b 13.39 a 9.09 a 24.8 c 48.0 b
农华816 Nonghua 816 11.59 c 7.86 bc 20.7 cd 49.7 a 12.21 b 8.26 b 24.8 c 46.4 c
平均值 Mean 11.79 7.99 21.4 48.7 12.19 8.24 25.2 47.6

表6

不同玉米品种收获期籽粒含水量和平均脱水速率"

品种
Variety
2018 2019
收获期籽粒含水量
Grain moisture content
when harvest (%)
平均脱水速率
Average dehydration
rate (% d-1)
收获期籽粒含水量
Grain moisture content
when harvest (%)
平均脱水速率
Average dehydration rate (% d-1)
郑单958 Zhengdan 958 29.1 a 0.99 b 30.1 a 1.02 c
浚单20 Xundan 20 28.6 ab 1.00 b 29.5 a 1.02 c
登海605 Denghai 605 28.4 bc 1.00 b 29.0 b 1.04 bc
伟科702 Weike 702 28.4 bc 0.99 b 28.2 c 1.04 bc
先玉335 Xianyu 335 26.8 e 1.02 ab 27.1 b 1.05 b
迪卡517 Dika 517 26.0 f 1.03 a 25.7 d 1.08 a
MC670 28.5 b 1.00 b 29.9 a 1.02 c
农华816 Nonghua 816 27.1 de 1.02 ab 28.5 bc 1.04 bc

表7

不同玉米品种产量、穗粒数、千粒重、灌浆特征和脱水特征的相关性分析"

性状Trait GY KNP TKW Gmax Gmean P GMCH ADR
GY 1
KNP 0.73** 1
TKW 0.33 -0.38 1
Gmax 0.63** 0.04 0.76** 1
Gmean 0.61* 0.01 0.77** 0.99** 1
P -0.14 -0.45 0.45 0.02 0.033 1
GMCH 0.34 0.04 0.32 0.51* 0.53* 0.46 1
ADR 0.35 0.68** -0.53* -0.14 -0.18 -0.68** -0.41 1

表8

不同麦玉品种组合的周年产量与光温水资源利用效率"

品种
Variety
玉米品种
Maize variety
2017—2018 2018—2019
周年产量
AY
(t hm‒2)
灌溉水
利用效率
IWUE
(kg m‒3)
积温
利用效率
TUE
(kg hm‒2 ℃ d‒1)
光能
利用效率
RUE
(g MJ‒1)
经济效益
EB
(Yuan hm‒2)
周年产量
AY
(t hm‒2)
灌溉水
利用效率
IWUE
(kg m‒3)
积温
利用效率
TUE
(kg hm‒2 ℃ d‒1)
光能
利用效率
RUE
(g MJ‒1)
经济效益
EB
(Yuan hm‒2)
济麦22 Jimai 22 郑单958 Zhengdan 958 19.2 b 6.38 b 3.87 b 0.40 b 15,120 20.1 c 6.69 c 4.02 c 0.42 c 17,480
冀麦325 Jimai 325 登海605 Denghai 605 21.5 ab 7.16 ab 4.37 ab 0.46 ab 20,840 23.7 a 7.89 a 4.78 a 0.51 a 27,080
冀麦325 Jimai 325 MC670 22.5 a 7.49 a 4.57 a 0.48 a 23,920 23.7 a 7.90 a 4.78 a 0.51 a 27,080
石麦15 Shimai 15 登海605 Denghai 605 20.5 b 6.85 b 4.18 b 0.44 b 18,680 22.5 b 7.50 b 4.54 b 0.49 b 24,200
石麦15 Shimai 15 MC670 21.5 ab 7.18 ab 4.38 ab 0.46 ab 21,760 22.5 b 7.51 b 4.54 b 0.49 b 24,200
冀麦325 Jimai 325 先玉335 Xianyu 335 20.1 b 6.70 b 4.05 b 0.42 b 17,200 22.8 ab 7.60 ab 4.60 ab 0.49 ab 24,560
冀麦325 Jimai 325 迪卡517 Dika 517 20.1 b 6.70 b 4.05 b 0.42 b 17,200 23.0 ab 7.67 ab 4.64 ab 0.50 ab 25,120
石麦15 Shimai 15 先玉335 Xianyu 335 19.2 b 6.40 b 3.88 b 0.40 b 16,040 21.6 b 7.20 b 4.36 b 0.47 b 21,680
石麦15 Shimai 15 迪卡517 Dika 517 19.2 b 6.40 b 3.88 b 0.40 b 16,040 21.8 b 7.27 b 4.40 b 0.47 b 22,240
[1] 周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明. 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019,52:1501-1517.
Zhou B Y, Ma W, Sun X F, Gao Z H, Ding Z S, Li C F, Zhao M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Sci Agric Sin, 2019,52:1501-1517 (in Chinese with English abstract).
[2] 李源方, 李宗新, 张慧, 薛艳芳, 钱欣, 肖蓉, 刘仲秋, 高英波. 优化品种匹配和灌水量提高冬小麦-夏玉米产量及水分利用效率研究. 山东农业科学, 2020,52(10):18-24.
Li Y F, Li Z X, Zhang H, Xue Y F, Qian X, Xiao R, Liu Z Q, Gao Y B. Optimizing variety matching and irrigation amount to improve winter wheat and summer maize yield and water use efficiency. Shandong Agri Sci, 2020,52(10):18-24 (in Chinese with English abstract).
[3] Sun H Y, Zhang X Y, Chen S Y, Pei D, Liu C M. Effects of harvest and sowing time on the performance of the rotation of winter wheat-summer maize in the North China Plain. Industr Crops Prod, 2007,25:239-247.
[4] 王树安. 吨良田技术——小麦-夏玉米两茬平播亩产吨粮的理论与技术体系研究. 北京: 农业出版社, 1991.
Wang S A. Technology for Grain Production with a Yield of 15 Tonsper Hectare: Theory and Technology with a High Yield Output of 15 Tons per Hectare in Winter Wheat and Summer Maize Double Cropping System. Beijing: Agriculture Press, 1991 (in Chinese).
[5] 王树安. 中国吨粮田建设. 北京: 北京农业大学出版社, 1994.
Wang S A. Construction of the Grain Field with a Yield of 15 Tons per Hectare in China. Beijing: Beijing Agricultural University Press, 1994 (in Chinese).
[6] 付雪丽, 张惠, 贾继增, 杜立丰, 付金东, 赵明. 冬小麦-夏玉米“双晚”种植模式的产量形成及资源效率研究. 作物学报, 2009,35:1708-1714.
Fu X L, Zhang H, Jia J Z, Du L F, Fu J D, Zhao M. Yield performance and resources use efficiency of winter wheat and summer maize in double late-cropping system. Acta Agron Sin, 2009,35:1708-1714 (in Chinese with English abstract).
[7] 周宝元, 马玮, 孙雪芳, 丁在松, 李从锋, 赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究. 作物学报, 2019,45:589-600.
Zhou B Y, Ma W, Sun X F, Ding Z S, Li C F, Zhao M. Characteristics of annual climate resource distribution and utilization in high-yielding winter wheat-summer maize double cropping system. Acta Agron Sin, 2019,45:589-600 (in Chinese with English abstract).
[8] 周宝元, 王志敏, 岳阳, 马玮, 赵明. 冬小麦-夏玉米与双季玉米种植模式产量及光温资源利用特征比较. 作物学报, 2015,41:1373-1385.
Zhou B Y, Wang Z M, Yue Y, Ma W, Zhao M. Comparison of yield and light-temperature resource use efficiency between wheat-maize and maize-maize cropping systems. Acta Agron Sin, 2015,41:1373-1385 (in Chinese with English abstract).
[9] 任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018,44:137-143.
Ren B C, Gao F, Wei Y J, Dong S T, Zhao B, Liu P, Zhang J W. Suitable maturity period and accumulated temperature demand characteristics of summer corn under the condition of annual production of winter wheat and summer corn. Acta Agron Sin, 2018,44:137-143 (in Chinese with English abstract).
[10] 胡洵瑀, 王靖. 气候要素、品种及管理措施变化对河南省冬小麦和夏玉米生育期的影响. 中国农业大学学报, 2019,24(11):16-29.
Hu X Y, Wang J. Impacts of climate factors, varieties and management measures on the growth period of winter wheat and summer maize in Henan province. J China Agric Univ, 2019,24(11):16-29 (in Chinese with English abstract).
[11] 马洁华, 刘园, 杨晓光, 王文峰, 薛昌颖, 张晓煜. 全球气候变化背景下华北平原气候资源变化趋势. 生态学报, 2010,30:3818-3827.
Ma J H, Liu Y, Yang X G, Wang W F, Xue C Y, Zhang X Y. Trends of climate resources in the north China plain under the background of global climate change. Acta Ecol Sin, 2010,30:3818-3827 (in Chinese with English abstract).
[12] Wang H X, Liu C M, Zhang L. Water-saving agriculture in China: an overview. Adv Agron, 2002,75:135-171.
[13] Wang J, Wang E L, Yang X G, Zhang F S, Yin H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim Change, 2012,113:825-840.
[14] 刘志娟, 杨晓光, 王文峰. 气候变化背景下中国农业气候资源变化: IV. 黄淮海平原半湿润暖温麦-玉两熟灌溉农区农业气候资源时空变化特征. 应用生态学报, 2011,22:905-912.
Liu Z J, Yang X G, Wang W F. Changes of China agricultural climate resources under the background of climate change: IV. Spatiotemporal change characteristics of agricultural climate resources in sub-humid warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain. Chin J Appl Ecol, 2011,22:905-912 (in Chinese with English abstract).
[15] 屈宝香, 李文娟, 钱静斐. 中国粮食增产潜力主要影响因素分析. 中国农业资源与区划, 2009,30(4):34-39.
Qu B X, Li W J, Qian J F. Analysis on the main influencing factors of China’s grain production potential. J China Agric Resourc Region Plan, 2009,30(4):34-39 (in Chinese with English abstract).
[16] 吕硕, 杨晓光, 赵锦, 刘志娟, 李克南, 慕臣英, 陈晓超, 陈范骏, 米国华. 气候变化和品种更替对东北地区春玉米产量潜力的影响. 农业工程学报, 2013,29(18):179-190.
Lyu S, Yang X G, Zhao J, Liu Z J, Li K N, Mu C Y, Chen X C, Chen F J, Mi G H. Effects of climate change and variety alternative on potential yield of spring maize in Northeast China. Trans CSAE, 2013,29(18):179-190 (in Chinese with English abstract).
[17] Liu Y, Wang E, Yang X, Wang J. Contributions of climatic and crop varietal changes to crop production in the North China Plain, since 1980. Global Chang Biol, 16:2287-2299.
[18] Tao F, Zhang S, Zhang Z, Rötter R P. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Global Chang Biol, 20:3686-3699.
[19] 金善宝. 中国小麦品种志. 北京: 中国农业出版社, 1997.
Jin S B. Annals of Chinese Wheat. Beijing: China Agriculture Press, 1997 (in Chinese).
[20] 中华人民共和国国家质量监督检验检疫总局. 中华人民共和国国家标准GB/T21127-2007, 小麦抗旱性鉴定评价技术规范. 北京: 中国标准出版社, 2007. p 10.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. National Standard of the People’s Republic of China GB/T21127-2007, Technical Specification for Identification and Evaluation of Drought Resistance of Wheat. Beijing: China Standards Press, 2007. p 10 (in Chinese).
[21] 温振民, 张永科. 用高稳系数法估算玉米杂交种高产稳产性的探讨. 作物学报, 1994,20:508-512.
Wen Z M, Zhang Y K. Discussion on estimating high and stable yield of maize hybrids by high stability coefficient method. Acta Agron Sin, 1994,20:508-512 (in Chinese with English abstract).
[22] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988,14:182-193.
Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988,14:182-193 (in Chinese with English abstract).
[23] 武维华. 植物生理学(第2版). 北京: 科学出版社, 2008.
Wu W H. Plant Physiology(2nd edn). Beijing: Science Press, 2008 (in Chinese).
[24] 宋松泉, 程红焱, 姜孝成. 种子生物学. 北京: 科学出版社, 2008.
Song S Q, Cheng H Y, Jiang X C, Seed Biology. Beijing: Science Press, 2008 (in Chinese).
[25] 荆彦平. 小麦和玉米颖果的生长及胚乳细胞的发育. 扬州大学硕士学位论文, 江苏扬州, 2014.
Jing Y P. The Caryopsis Growth and the Endosperm Cell Development in Wheat and Maize. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2014 (in Chinese with English abstract).
[26] Meng Q F, Sun Q P, Chen X P, Cui Z L, Yue S C, Zhang F S, Römheld V. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric Ecosyst Environ, 2012,146:93-102.
[27] 严定春, 朱艳, 曹卫星. 水稻栽培适宜品种选择的知识模型. 南京农业大学学报, 2004,27(4):20-25.
Yan D C, Zhu Y, Cao W X. A knowledge model for selection of suitable variety in rice production. J Nanjing Agric Univ, 2004,27(4):20-25 (in Chinese with English abstract).
[28] 郑海霞, 封志明, 游松财. 基于GIS的甘肃省农业生产潜力研究. 地理科学进展, 2003,22:400-408.
Zheng H X, Feng Z M, You S C. A study on potential land productivity based on GIS technology in Gansu province. Prog Geogr, 2003,22:400-408 (in Chinese with English abstract).
[29] Zhou Y, Li Y, Liu X, Wang K, Muhammad T. Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation. Sci Rep, 2019,9:5226.
[30] Wang J, Wang E L, Yang X G, Zhang F S, Yin H. Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Clim Change, 2012,113:825-840.
[31] Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M. Maize grain yield and dry matter production responses to variations in weather conditions. Agron J, 2016,108:196-204.
[32] 胡焕焕, 刘丽平, 李瑞奇, 李慧玲, 李雁鸣. 播种期和密度对冬小麦品种河农822产量形成的影响. 麦类作物学报, 2008,28:490-495.
Hu H H, Liu L P, Li R Q, Li H L, Li Y M. Effect of sowing date and planting density on the yield formation of a winter wheat cultivar Henong 822. J Triticeae Crops, 2008,28:490-495 (in Chinese with English abstract).
[33] Shah F, Coulter J A, Ye C, Wu W. Yield penalty due to delayed sowing of winter wheat and the mitigatory role of increased seeding rate. Eur J Agron, 2020,119:126120.
[34] 冯素伟, 胡铁柱, 李淦, 董娜, 李笑慧, 茹振钢, 程自华. 不同小麦品种籽粒灌浆特性分析. 麦类作物学报, 2009,29:643-646.
Feng S W, Hu T Z, Li G, Dong N, Li X H, Ru Z G, Cheng Z H. Analysis of grain filling characteristics of different wheat varieties. J Triticeae Crops, 2009,29:643-646 (in Chinese with English abstract).
[35] 刘红杰, 倪永静, 任德超, 杜克明, 葛君, 朱培培, 赵敬领, 黄建英, 吕国华, 胡新. 不同基因型冬小麦籽粒灌浆特征及其与千粒重的关系. 中国农业气象, 2019,40:630-636.
Liu H J, Ni Y J, Ren D C, Du K M, Ge J, Zhu P P, Zhao J L, Huang J Y, Lyu G H, Hu X. Grain filling characteristics of different genotypes of winter wheat and its relationship with thousand-grain weight. Chin J Agrom, 2019,40:630-636 (in Chinese with English abstract).
[36] Xin Y, Tao F. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain. Sci Total Environ, 2019,654:480-492.
[37] Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric Water Manage, 2006,85:211-218.
[38] 孙加梅, 薛春芝. 高产广适高抗小麦品种济麦22品种特性和栽培技术. 天津农学院学报, 2010,17(4):36-38.
Sun J M, Xue C Z. Characteristics and cultivation techniques of high-yield, wide-adapted and high-resistant wheat variety Jimai 22. J Tianjin Agric Univ, 2010,17(4):36-38 (in Chinese with English abstract).
[39] 李升东, 张卫峰, 王法宏, 司纪升, 孔令安, 刘建军. 施氮量对小麦氮素利用的影响. 麦类作物学报, 2016,36:223-230.
Li S D, Zhang W F, Wang F H, Si J S, Kong L A, Liu J J. Effect of nitrogen application rate on nitrogen utilization of wheat. J Triticeae Crops, 2016,36:223-230 (in Chinese with English abstract).
[40] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50:2036-2043.
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu C W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract).
[41] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆. 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018,51:1878-1889.
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018,51:1878-1889 (in Chinese with English abstract).
[42] 张万旭, 明博, 王克如, 刘朝巍, 侯鹏, 陈江鲁, 张国强, 杨京京, 车淑玲, 谢瑞芝, 李少昆. 基于品种熟期和籽粒脱水特性的机收粒玉米适宜播期与收获期分析. 中国农业科学, 2018,51:1890-1898.
Zhang W X, Ming B, Wang K R, Liu C W, Hou P, Chen J L, Zhang G Q, Yang J J, Che S L, Xie R Z, Li S K. Analysis of sowing and harvesting allocation of maize based on cultivar maturity and grain dehydration characteristics. Sci Agric Sin, 2018,51:1890-1898 (in Chinese with English abstract).
[43] 王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性. 作物学报, 2021,47:149-158.
Wang R H, Xu T J, Chen C Y, Wang Y D, Lyu T F, Liu Y E, Cai W T, Liu X Z, Zhao J R. Grain filling and dehydrating characteristics of maize hybrids with different maturity. Acta Agron Sin, 2021,47:149-158 (in Chinese with English abstract).
[44] 韩小伟, 高英波, 张慧, 薛艳芳, 钱欣, 王竹, 赵海军, 刘开昌, 李宗新. 氮肥统筹对麦玉周年产量及氮肥利用效率的影响. 山东农业科学, 2019,51(4):79-84.
Han X W, Gao Y B, Zhang H, Xue Y F, Qian X, Wang Z, Zhao H J, Liu K C, Li Z X. effects of nitrogen fertilizer co-ordination on annual yield of wheat and maize and nitrogen use efficiency. Shandong Agric Sci, 2019,51(4):79-84 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[3] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
[4] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[5] 徐田军, 吕天放, 赵久然, 王荣焕, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 邢锦丰, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性[J]. 作物学报, 2021, 47(3): 566-574.
[6] 张帆, 杨茜. 大麦-双季稻轮作体系有机物料与化肥配施对大麦资源利用效率及产量的影响[J]. 作物学报, 2021, 47(12): 2522-2531.
[7] 王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性[J]. 作物学报, 2021, 47(1): 149-158.
[8] 周宝元,葛均筑,侯海鹏,孙雪芳,丁在松,李从锋,马玮,赵明. 黄淮海平原南部不同种植体系周年气候资源分配与利用特征研究[J]. 作物学报, 2020, 46(6): 937-949.
[9] 万泽花,任佰朝,赵斌,刘鹏,张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化[J]. 作物学报, 2019, 45(9): 1446-1453.
[10] 李昊昱,孟兆良,庞党伟,陈金,侯永坤,崔海兴,金敏,王振林,李勇. 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响[J]. 作物学报, 2019, 45(6): 893-903.
[11] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[12] 柏延文,杨永红,朱亚利,李红杰,薛吉全,张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响[J]. 作物学报, 2019, 45(12): 1868-1879.
[13] 万泽花,任佰朝,赵斌,刘鹏,董树亭,张吉旺. 不同熟期夏玉米品种籽粒灌浆与脱水特性及其密度效应[J]. 作物学报, 2018, 44(10): 1517-1527.
[14] 李赞堂, 王士银, 姜雯宇, 张帅, 张少斌, 徐江. 穗分化期外施24-表油菜素内酯(EBR)促进水稻源、库及籽粒灌浆的生理机制[J]. 作物学报, 2018, 44(04): 581-590.
[15] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J]. 作物学报, 2018, 44(04): 554-568.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!