欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1871-1883.doi: 10.3724/SP.J.1006.2022.13024

• 综述 • 上一篇    下一篇

玉米密植光合生理机制及应用途径研究进展

郭瑶(), 柴强*(), 殷文, 范虹   

  1. 省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州730070
  • 收稿日期:2021-03-19 接受日期:2022-02-22 出版日期:2022-08-12 网络出版日期:2022-03-09
  • 通讯作者: 柴强
  • 作者简介:E-mail: guoyaogsau@126.com
  • 基金资助:
    国家自然科学基金项目(32101857);国家自然科学基金项目(U21A20218);甘肃省科技计划项目(20JR5RA037);甘肃农业大学伏羲青年人才培养计划项目(Gaufx-03Y10);中央引导地方科技发展专项(ZCYD-2021-10)

Research progress of photosynthetic physiological mechanism and approaches to application in dense planting maize

GUO Yao(), CHAI Qiang*(), YIN Wen, FAN Hong   

  1. State Key Laboratory of Arid Land Crop Science / Faculty of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2021-03-19 Accepted:2022-02-22 Published:2022-08-12 Published online:2022-03-09
  • Contact: CHAI Qiang
  • Supported by:
    National Natural Science Foundation of China(32101857);National Natural Science Foundation of China(U21A20218);Science and Technology Project of Gansu Province(20JR5RA037);Fuxi Young Talents Fund of Gansu Agricultural University(Gaufx-03Y10);Central Government will Guide Local Science and Technology Development Projects(ZCYD-2021-10)

摘要:

在有限土地面积上生产足够粮食保证粮食安全, 关键在于提高单产。密植作为提高玉米单产的重要农艺措施, 适度增加种植密度, 其群体光合速率不受影响甚至有所提高, 进而可以增加单产。揭示玉米密植光合生理学机理, 是当前提高单产的重点研究方向。密植致使玉米光合特性发生改变, 调控限制光合生理因子是有效促进玉米密植增产的关键所在, 而挖掘密植增产的光合生理学潜力是玉米密植生理学基础, 在保障粮食安全中发挥着重要作用。因此, 本文基于前人研究成果, 重点综述了光合生理研究方法与思路变迁, 国内外玉米适应密植的光合生理响应和相关农艺调控途径研究现状, 为光合生理研究提供理论基础与技术方法。围绕未来玉米密植生产对科技的需求, 依据现代科技的发展趋势, 我们认为, 传统研究方法必须结合分子生物学技术挖掘光合潜力或缩小实际与理论光合速率之间的差距以实现高光效是未来玉米密植研究的主要目标。探讨光合生理功能基因差异表达对栽培措施的响应作为今后研究的重点之一, 明确农艺措施与密植玉米光合相关基因表达信息的联系与互作关系, 通过农艺栽培措施与分子生物学技术融合挖掘玉米密植增产的光合生理潜力, 为玉米密植增产提供光合生理理论和实践支撑。

关键词: 玉米, 密植, 方法变迁, 光合生理, 调控途径

Abstract:

To ensure enough crop production of limited land area is important to food security. The key to solve this issue is to increase yield per unit area. Dense planting is an effective agronomic management practice to increase yield per unit area, photosynthetic rate would not be decreased or even improved by increasing planting density moderately, and then enhancing the yield per unit area. It is a key research focus on revealing the mechanism of photosynthetic physiology for improving yield per unit area by dense planting condition of maize. Dense planting would lead to change photosynthetic characteristics, so controlling the physiological factors that restricts photosynthesis is essential for increasing yield. Tap the photosynthetic physiologic potential for maize condition is physiological basis to ensure yield, which plays an important role in addressing food security issues. Therefore, this review focuses on the changes of the research methods and ideas in photosynthetic physiology, and the research status of the photosynthetic physiological response of maize adapted to dense planting and related agronomic regulation pathways at home and abroad, based on previous research results, so as to provide the theoretical and technical methods basis for photosynthetic physiology research. Based on the development trend of modern technology, it is believed that tapping photosynthetic potential and narrowing the gap between photosynthetic potential and actual photosynthetic efficiency are still the main goals of maize dense planting research by traditional research methods combined with molecular biology techniques in the future. In further study, research emphasis should be to investigate the responses of differential expression of photosynthetic physiological function genes to cultivation measures, clarifying the relationship and interaction between agronomic management practice and information expression of photosynthetic-related genes in densely planted maize, enhancing photosynthetic potential for maize via agronomic management practice and molecular biology technology, in order to provide photosynthetic physiological theory and practice to support for maize dense planting.

Key words: maize, dense planting, method changes, photosynthetic physiological, regulation approach

图1

叶绿素分子的光激发结构图[11]"

图2

红光远红光比(R:FR)调控伸长生长的分子机制假设模型[41]"

图3

拟南芥phyB-PIFs-miR156-SPLs调控SAS的模型[42]"

图4

密植对光合生理主要影响"

[1] 李少昆, 赵久然, 董树亭, 赵明, 李潮海, 崔彦宏, 刘永红, 高聚林, 薛吉全, 王立春, 王璞, 陆卫平, 王俊河, 杨祁峰, 王子明. 中国玉米栽培研究进展与展望. 中国农业科学, 2017, 50: 1941-1959.
Li S K, Zhao J R, Dong S T, Zhao M, Li C H, Cui Y H, Liu Y H, Gao J L, Xue J Q, Wang L C, Wang P, Lu W P, Wang J H, Yang Q F, Wang Z M. Advances and prospects of maize cultivation in China. Sci Agric Sin, 2017, 50: 1941-1959. (in Chinese with English abstract)
[2] Slattery R A, Ort D R. Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiol, 2021, 185: 34-48.
doi: 10.1093/plphys/kiaa006 pmid: 33631812
[3] Jia Q, Sun L, Mou H, Ali S, Liu D, Zhang Y, Zhang P, Ren X, Jia Z. Effects of planting patterns and sowing densities on grain- filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agric Water Manage, 2018, 201: 287-298.
doi: 10.1016/j.agwat.2017.11.025
[4] Li T, Liu Y, Shi L, Jiang C D. Systemic regulation of photosynthetic function in field-grown sorghum. Plant Physiol Biochem, 2015, 94: 86-94.
doi: 10.1016/j.plaphy.2015.05.008
[5] 李广浩, 刘娟, 董树亭, 刘鹏, 张吉旺, 赵斌, 石德杨. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响. 中国农业科学, 2017, 50: 2247-2258.
Li G H, Liu J, Dong S T, Liu P, Zhang J W, Zhao B, Shi D Y. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density- tolerance maize hybrids. Sci Agric Sin, 2017, 50: 2247-2258. (in Chinese with English abstract)
[6] Chapepa B, Mudada N, Mapuranga R. The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: an overview. J Cotton Res, 2020, 3: 6.
doi: 10.1186/s42397-020-00048-2
[7] Gonçalves A O, Silva E H F M, Gasparotto L G, Rosa J M, Carmo S, Fattori-Júnior I M, Marin F R. Improving indirect measurements of the leaf area index using canopy height. Pesq Agron Bras, 2020, 55: 1894.
[8] 孙华林, 耿石英, 王小燕, 熊勤学. 晚播条件下基于高光谱的小麦叶面积指数估算方法. 光谱学与光谱分析, 2019, 39: 1199-1206.
Sun H L, Geng S Y, Wang X Y, Xiong Q X. Estimation method of wheat leaf area index based on hyperspectral under late sowing conditions. Spect Spect Anal, 2019, 39: 1199-1206. (in Chinese with English abstract)
[9] Hill R. Oxygen evolved by isolated chloroplasts. Nature, 1937, 139: 881-882.
doi: 10.1038/139881a0
[10] Grieco M, Tikkanen M, Paakkarinen V, Kangasjärvi S, Aro E M. Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light. Plant Physiol, 2012, 160: 1896-1910.
doi: 10.1104/pp.112.206466
[11] 许大全. 光合作用效率. 上海: 上海科学技术出版社, 2002. pp 9-37.
Xu D Q. Photosynthetic Efficiency. Shanghai: Shanghai Scientific & Technical Publishers 2002. pp 9-37. (in Chinese)
[12] Kurisu G, Zhang H M, Smith J L, Cramer W A. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science, 2003, 302: 1009-1014.
pmid: 14526088
[13] Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature, 2004, 428: 287-292.
doi: 10.1038/nature02373
[14] Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature, 2016, 534: 69-74.
doi: 10.1038/nature18020
[15] Wang H W, Lei J L, Shi Y G. Biological cryo-electron microscopy in China. Prot Sci, 2016, 26: 16-31.
doi: 10.1002/pro.3018
[16] Zao L S, Huokko T, Wilson S, Simpson D M, Liu L. Structural variability, coordination and adaptation of a native photosynthetic machinery. Nat Plants, 2020, 6: 869-882.
doi: 10.1038/s41477-020-0694-3
[17] Ferreira K N, Iverson T M, Maghlaoui K. Architecture of the photosynthetic oxyen-evolving center. Science, 2004, 303: 1831-1838.
doi: 10.1126/science.1093087
[18] 柴华, 钟尚志, 崔海莹, 李杰, 孙伟. 植物呼吸释放CO2碳同位素变化研究进展. 生态学报, 2018, 38: 2616-2624.
Chai H, Zhong S Z, Cui H Y, Li J, Sun W. Variation in the carbon isotope composition of CO2 derived from plant autotrophic respiration. Acta Ecol Sin, 2018, 38: 2616-2624. (in Chinese with English abstract)
[19] Schloder E. Introduction to optical methods in photosynthesis. Photosyn Res, 2009, 101: 93-104.
doi: 10.1007/s11120-009-9446-y
[20] Filek M, Sieprawska A, Kościelniak J, Oklestkova J, Jurczyk B, Telk A, Biesaga-Kościelniak J, Janeczko A. The role of chloroplasts in the oxidative stress that is induced by zearalenone in wheat plants-the functions of 24-epibrassinolide and selenium in the protective mechanisms. Plant Physiol Biochem, 2019, 137: 84-92.
doi: 10.1016/j.plaphy.2019.01.030
[21] 张稳, 孟淑君, 王琪月, 万炯, 马拴红, 林源, 丁冬, 汤继华. 玉米pTAC2影响苗期叶片叶绿素合成的转录组分析. 中国农业科学, 2020, 53: 874-889.
Zhang W, Meng S J, Wang Q Y, Wan J, Ma S H, Lin Y, Ding D, Tang J H. Transcriptome analysis of maize pTAC2 effects on chlorophyll synthesis in seedling leaves. Sci Agric Sin, 2020, 53: 874-889. (in Chinese with English abstract)
[22] Zhang Y H, Wang E M, Zhao T F, Wang Q Q, Chen L J. Characteristics of chlorophyll fluorescence and antioxidant-oxidant balance in PEPC and PPDK transgenic rice under aluminum stress. Russ J Plant Phys, 2018, 65: 49-56.
[23] Zhang D S, Sun Z X, Feng L S, Bai W, Yang N, Zhang Z, Du G J, Feng C, Cai Q, Wang Q, Zhang Y, Wang R N, Arshad A, Hao X Y, Sun M, Gao Z Q, Zhang L Z. Maize plant density affects yield, growth and source-sink relationship of crops in maize/peanut intercropping. Field Crops Res, 2020, 257: 107926.
doi: 10.1016/j.fcr.2020.107926
[24] Coulter J A, Nafziger E D, Janssen M R, Palle P. Response of Bt and near-isoline corn hybrids to plant density. Agron J, 2010, 102: 103-111.
doi: 10.2134/agronj2009.0217
[25] 王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆. 密度对玉米产量(>15,000 kg hm-2)及其产量构成因子的影响. 中国农业科学, 2012, 45: 3437-3445.
Wang K, Wang K R, Wang Y H, Zhao J, Zhao R L, Wang X M, Li J, Liang M X, Li S K. Effects of density on maize yield and yield components. Sci Agric Sin, 2012, 45: 3437-3445. (in Chinese with English abstract)
[26] 李荣发, 刘鹏, 杨清龙, 任昊, 董树亭, 张吉旺, 赵斌. 玉米密植群体下部叶片衰老对植株碳氮分配与产量形成的影响. 作物学报, 2018, 44: 1032-1042.
Li R F, Liu P, Yang Q L, Ren H, Dong S T, Zhang J W, Zhao B. Effects of lower leaf senescence on carbon and nitrogen distribution and yield formation in maize (Zea mays L.) with high planting density. Acta Agron Sin, 2018, 44: 1032-1042. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01032
[27] 王巧梅, 樊志龙, 赵彦华, 殷文, 柴强. 绿洲灌区不同密度玉米群体的耗水特性研究. 作物学报, 2017, 43: 1347-1356.
doi: 10.3724/SP.J.1006.2017.01347
Wang Q M, Fan Z L, Zhao Y H, Yin W, Chai Q. Effect of planting density on water consumption characteristics of maize in oasis irrigation area. Acta Agron Sin, 2017, 43: 1347-1356. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01347
[28] Assefa Y, Prasad P V V, Carter P, Hinds M, Bhalla G, Schon R, Jeschke M, Paszkiewicz S, Ciampitti I A. Yield responses to planting density for US modern corn hybrids: a synthesis-analysis. Crop Sci, 2016, 56: 2802-2817.
[29] Ren B, Liu W, Zhang J, Dong S T, Liu P, Zhao B. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. Sci Nat, 2017, 104: 12.
doi: 10.1007/s00114-017-1445-9
[30] 李广浩, 李龙, 陆大雷, 陆卫平. 氨基酸复合肥对不同密度春玉米产量和养分利用的影响. 中国作物学会学术年会, 2018. p 106.
Li G H, Li L, Lu D L, Lu W P. Effect of amino acid compound fertilizer on the yield and nutrient utilization of different density spring corn. Proceedings of Annual Academic Meeting of the Crop Science Society of China, 2018. p 106. (in Chinese with English abstract)
[31] Jare D, Krnji S B, Vrani M. Effect of plant density on leaf area index, anthesis to silking interval, yield and yield components of maize inbreds and their sister-lines. J Cent Eur Agric, 2019, 20: 179-193.
doi: 10.5513/JCEA01/20.1.2194
[32] Piao L, Qi H, Li C F, Zhao M. Optimized tillage practices and row spacing to improve grain yield and matter transport efficiency in intensive spring maize. Field Crops Res, 2016, 198: 258-268.
doi: 10.1016/j.fcr.2016.08.012
[33] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233.
doi: 10.3724/SP.J.1006.2010.01226
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang W J, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01226
[34] 侯佳敏, 罗宁, 王溯, 孟庆锋, 王璞. 增密对我国玉米产量、叶面积指数、光合速率的影响. 中国农业科学, 2021, 54: 2538-2546.
Hou J M, Luo N, Wang S, Meng Q F, Wang P. Effects of increasing planting density on grain yield, leaf area index and photosynthetic rate of maize in China. Sci Agric Sin, 2021, 54: 2538-2546. (in Chinese with English abstract)
[35] 吴含玉, 张雅君, 张旺锋, 王克如, 李少昆, 姜闯道. 田间密植诱导抽穗期玉米叶片衰老时的光合作用机制. 作物学报, 2019, 45: 248-255.
doi: 10.3724/SP.J.1006.2019.83042
Wu H Y, Zhang Y J, Zhang W F, Wang K R, Li S K, Jiang C D. Photosynthetic characteristics of senescent leaf induced by high planting density of maize at heading stage in the field. Acta Agron Sin, 2019, 45: 248-255. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.83042
[36] Long S P, Zhu X G, Naidu S L, Ort D R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ, 2006, 29: 315-330.
doi: 10.1111/j.1365-3040.2005.01493.x
[37] 胡旦旦, 张吉旺, 刘鹏, 赵斌, 董树亭. 密植条件下玉米品种混播对夏玉米光合性能及产量的影响. 作物学报, 2018, 44: 920-930.
Hu D D, Zhang J W, Liu P, Zhao B, Dong S T. Effects of mixed-cropping with different varieties on photosynthetic characteristics and yield of summer maize under close planting condition. Acta Agron Sin, 2018, 44: 920-930. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00920
[38] Xiao Z, Liao Y, Ren G D, Zhang Y Y, Kuai B K. Repression of AtCLIH expression results in a decrease in the ratio of chlorophyll a/b but does not affect the rate of chlorophyll degradation during leaf senescence. J Plant Physiol Mol Biol, 2007, 33: 596-606.
pmid: 18349515
[39] Guo Y, Yin W, Fan H, Fan Z L, Hu F L, Yu A Z, Zhao C, Chai Q, Asibi A E, Zhang X J. Photosynthetic physiological characteristics of water and nitrogen coupling for enhanced high-density tolerance and increased yield of maize in arid irrigation regions. Front Plant Sci, 2021, 12: 726568.
doi: 10.3389/fpls.2021.726568
[40] Murakami K, Matsuda R, Fujiwara K. Light-induced systemic regulation of photosynthesis in primary and trifoliate leaves of phaseolus vulgaris: effects of photosynthetic photon flux density (PPFD) versus spectrum. Plant Biol, 2014, 16: 16-21.
doi: 10.1111/plb.12055
[41] Franklin K A. Shade avoidance. New Phytol, 2008, 179: 930-944.
doi: 10.1111/j.1469-8137.2008.02507.x pmid: 18537892
[42] Xie Y R, Liu Y, Wang H, Ma X J, Wang B B, Wu G X, Wang H Y. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun, 2017, 8: 348.
doi: 10.1038/s41467-017-00404-y
[43] Liebsch D, Keech O. Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. New Phytol, 2016, 212: 563-570.
doi: 10.1111/nph.14217
[44] 张柳, 王铮, 张亚婕, 林春, 陈严平, 李军营, 毛自朝. 烟草叶片衰老期过程中的蛋白质组学分析. 植物生理学报, 2014, 50: 488-500.
Zhang L, Wang Z, Zhang Y J, Lin C, Chen Y P, Li J Y, Mao Z Z. Proteomic analysis of senescing leaf of tobacco. J Plant Physiol, 2014, 50: 488-500. (in Chinese with English abstract)
[45] 贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探. 植物生态学报, 2010, 34: 1439-1447.
doi: 10.3773/j.issn.1005-264x.2010.12.010
Jia S F, Li C F, Dong S T, Zhang J W. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize (Zea mays). Chin J Plant Ecol, 2010, 34: 1439-1447. (in Chinese with English abstract)
[46] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展. 作物学报, 2020, 46: 1819-1830.
doi: 10.3724/SP.J.1006.2020.02027
Li Y S, Jin J, Liu X B. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review. Acta Agron Sin, 2020, 46: 1819-1830. (in Chinese with English abstract)
[47] Aliyeva N K, Aliyeva D R, Suleymanov S Y, Rzayev F H, Gasimov E K, Huseynova I M. Biochemical properties and ultrastructure of mesophyll and bundle sheath thylakoids from maize (Zea mays) chloroplasts. Func Plant Biol, 2020, 47: 970-976.
doi: 10.1071/FP20004
[48] Buckley T N, John G P, Scoffoni C, Sack L. The sites of evaporation within leaves. Plant Physiol, 2017, 173: 1763-1782.
doi: 10.1104/pp.16.01605 pmid: 28153921
[49] Loucos K E, Simonin K A, Barbour M M. Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species. Plant Cell Environ, 2017, 40: 203-215.
doi: 10.1111/pce.12865
[50] Drozak A, Romanowska E. Acclimation of mesophyll and bundle sheath chloroplasts of maize to different irradiances during growth. BBA-Bioenergetics, 2006, 1757: 1539-1546.
doi: 10.1016/j.bbabio.2006.09.001
[51] Brouwer B, Ziolkowska A, Bagard M, Keech O, Gardeström P. The impact of light intensity on shade-induced leaf senescence. Plant Cell Environ, 2012, 35: 1084-1098.
doi: 10.1111/j.1365-3040.2011.02474.x
[52] Xiang Y, Bian X L, Wei T H, Yan J W, Sun X J, Han T, Dong B C, Zhang G F, Li J, Zhang A Y. ZmMPK5 phosphorylates ZmNAC49 to enhance oxidative stress tolerance in maize. New Phytol, 2021, 232: 2400-2417.
doi: 10.1111/nph.17761 pmid: 34618923
[53] 卢霖, 董志强, 董学瑞, 焦浏, 李光彦, 高娇. 乙矮合剂对不同密度夏玉米花粒期叶片氮素同化与早衰的影响. 作物学报, 2015, 41: 1870-1879.
doi: 10.3724/SP.J.1006.2015.01870
Lu L, Dong Z Q, Dong X R, Jiao L, Li G Y, Gao J. Effects of ethylene-chlormequat-potassium on leaf nitrogen assimilation after anthesis and early senescence under different planting densities. Acta Agron Sin, 2015, 41: 1870-1879. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01870
[54] Zhou Y F, Wang D, Wang N, Yu J L, Wang Y T, Wu Q, Xu W J, Huang R D. Involvement of endogenous abscisic acid and cytokinin in photosynthetic performance of different stay green inbred lines of maize under drought. Int J Agric Biol, 2016, 18: 1067-1074.
[55] Bi H G, Liu P P, Jiang Z S, Ai X Z. Overexpression of the Rubisco activase gene improves growth and low temperature and weak light tolerance in Cucumis sativus L. Physiol Plant, 2017, 161: 224-234.
doi: 10.1111/ppl.12587
[56] Panda D, Sarkar R K. Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars. Physiol Mol Biol Plants, 2013, 19: 43-51.
doi: 10.1007/s12298-012-0142-6
[57] Sun J L, Sui X L, Huang H Y, Wang S H, Wei Y X, Zhang Z X. Low light stress down-regulated Rubisco gene expression and photosynthetic capacity during cucumber (Cucumis sativus L.) leaf development. J Integr Agric, 2014, 13: 997-1007.
doi: 10.1016/S2095-3119(13)60670-X
[58] Wang Y W, Yu J, Jiang X H, Sun L G, Li K, Wang P Y, Wu M, Chen G X, Lv C G. Analysis of thylakoid membrane protein and photosynthesis related key enzymes in super high-yield hybrid rice LYPJ grown in field condition during senescence stage. Acta Physiol Plant, 2015, 37: 1.
doi: 10.1007/s11738-014-1746-y
[59] Naik A A, Reddy M S, Babu P, Kavitha P. Effect of plant density and nitrogen management on uptake of major nutrients in sweet corn (Zea mays var. saccharata). Int J Mol Sci, 2020, 9: 3656-3660.
[60] Kuai B, Chen J, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot, 2018, 69: 751-767.
doi: 10.1093/jxb/erx322
[61] Kobayashi K, Masuda T. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front Plant Sci, 2016, 7: 1811.
pmid: 27990150
[62] Sussenbacher I, Menghini D, Scherzer G, Salinger K, Erhart T, Moser S, Vergeiner C, Hörtensteiner S, Kräutler B. Cryptic chlorophyll breakdown in non-senescent green Arabidopsis thaliana leaves. Photosynth Res, 2019, 142: 69-85.
doi: 10.1007/s11120-019-00649-2
[63] Cao Y J, Wang L C, Gu W R, Wang Y J, Zhang J H. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J Integr Agron, 2021, 20: 494-510.
[64] Zhou T, Wang L, X Sun, Wang X C, Wang X C, Pu T, Yang H, Rengel Z, Liu W G, Yang W Y. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/ soybean relay strip intercropping. Field Crops Res, 2021, 262: 108054.
doi: 10.1016/j.fcr.2020.108054
[65] Wang Z K, Zhao X N, Wu P T, Gao Y, Yang Q, Shen Y Y. Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Res, 2017, 214: 1-13.
doi: 10.1016/j.fcr.2017.08.017
[66] Huang F Y, Liu Z H, Zhang P, Jia Z K. Hydrothermal effects on maize productivity with different planting patterns in a rainfed farmland area. Soil Tillage Res, 2021, 205: 104794.
doi: 10.1016/j.still.2020.104794
[67] Gan Y T, Kadambot H M, Neil C, Li X G, Liu L P. Chapter seven-ridge-furrow mulching systems: an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv Agron, 2013, 118: 429-476.
[68] 孙仕军, 朱振闯, 陈志君, 杨丹, 张旭东. 不同颜色地膜和种植密度对春玉米田间地温、耗水及产量的影响. 中国农业科学, 2019, 52: 3323-3336.
Sun S J, Zhu Z C, Chen Z J, Yang D, Zhang X D. Effects of different colored plastic film mulching and planting density on soil temperature, evapotranspiration and yield of spring maize. Sci Agric Sin, 2019, 52: 3323-3336. (in Chinese with English abstract)
[69] 殷文, 陈桂平, 柴强, 赵财, 冯福学, 于爱忠, 胡发龙, 郭瑶. 前茬小麦秸秆处理方式对河西走廊地膜覆盖玉米农田土壤水热特性的影响. 中国农业科学, 2016, 49: 2898-2908.
Yin W, Chen G P, Chai Q, Zhao C, Feng F X, Yu A Z, Hu F L, Guo Y. Responses of soil water and temperature to previous wheat straw treatments in plastic film mulching maize field at Hexi Corridor. Sci Agric Sin, 2016, 49: 2898-2908. (in Chinese with English abstract)
[70] Guan X K, Wei L, Turner N C, Ma S C, Yang M D, Wang T C. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. J Clean Prod, 2020, 250: 119514.
doi: 10.1016/j.jclepro.2019.119514
[71] Xu R X, Zhao H M, Liu G B, You Y L, Ma L, Liu N, Zhang Y J. Effects of nitrogen and maize plant density on forage yield and nitrogen uptake in an alfalfa-silage maize relay intercropping system in the North China Plain. Field Crops Res, 2021, 263: 108068.
doi: 10.1016/j.fcr.2021.108068
[72] Jensen A M, Lof M, Gardiner E S. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L. seedlings. Environ Exp Bot, 2011, 71: 367-375.
[73] Rodrigues V A, Crusciol C A C, Bossolani J W, Portugal J R, Moretti L G, Bernart L, Vilela R G, Galeriani T, Lollato R P. Foliar nitrogen as stimulant fertilization alters carbon metabolism, reactive oxygen species scavenging and enhances grain yield in a soybean/maize rotation. Crop Sci, 2021, 61: 3687-3701.
doi: 10.1002/csc2.20587
[74] Wu Z Z, Bi Y F, Wang A K, Du X H, Ying Y Q, Zhang Y B. Alleviation of drought stress in phyllostachys edulis by N and P application. Sci Rep, 2018, 8: 228.
doi: 10.1038/s41598-017-18609-y
[75] Boomsma C R, Santini J B, Tollenaar M. Maize more phophysiological responses to intense crowding and low nitrogen availability: an analysis and review. Agron J, 2009, 101: 1426-1452.
doi: 10.2134/agronj2009.0082
[76] Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie A R, Hibberd J M. Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J, 2010, 62: 641-652.
doi: 10.1111/j.1365-313X.2010.04179.x
[77] 魏廷邦, 柴强, 王伟民, 王军强. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52: 428-444.
Wei T B, Chai Q, Wang W M, Wang J Q. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci Agric Sin, 2019, 52: 428-444. (in Chinese with English abstract)
[78] Boomsma C R, Santini J B, Terry D. Maize grain yield responses to plant height variability resulting from crop rotation and tillage system in a long-term experiment. Soil Tillage Res, 2010, 106: 227-240.
doi: 10.1016/j.still.2009.12.006
[79] Guo Y, Yin W, Fan Z L, Hu F L, Fan H, Zhao C, Yu A Z, Chai Q, Coulter J A. No-tillage with reduced water and nitrogen supply improves water use efficiency of wheat in arid regions. Agron J, 2020, 112: 578-591.
doi: 10.1002/agj2.20031
[80] 刘坤, 张雪海, 孙高阳, 闫鹏帅, 郭海平, 陈思远, 薛亚东, 郭战勇, 谢惠玲, 汤继华, 李卫华. 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018, 51: 821-834.
Liu K, Zhang X H, Sun G Y, Yan P S, Guo H P, Chen S Y, Xue Y D, Guo Z Y, Xie H L, Tang J H, Li W H. Genome-wide association studies of plant type traits in maize. Sci Agric Sin, 2018, 51: 821-834. (in Chinese with English abstract)
[81] Xu B, Li H, Li Y, Yu G H, Zhang J, Huang B R. Characterization and transcriptional regulation of chlorophyll b reductase gene NON-YELLOW COLORING 1 associated with leaf senescence in perennial ryegrass (Lolium perenne L.). Environ Exp Bot, 2018, 149: 43-50.
doi: 10.1016/j.envexpbot.2018.01.017
[1] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[2] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[3] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[4] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[5] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[6] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[7] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[8] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[9] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[10] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[11] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[12] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[13] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[14] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[15] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[2] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[3] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[4] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[5] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61 -66 .
[8] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .
[9] 王英;吴存祥;张学明;王云鹏;韩天富. 不同光周期条件下大豆生育期主基因的效应[J]. 作物学报, 2008, 34(07): 1160 -1168 .
[10] 王国莉;郭振飞. 磷营养对水稻不同耐冷品种光合特性的影响[J]. 作物学报, 2007, 33(08): 1385 -1389 .