作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1957-1976.doi: 10.3724/SP.J.1006.2022.14127
怀园园**(), 张晟瑞**(), 武婷婷, 李静, 孙石, 韩天富, 李斌*(), 孙君明*()
HUAI Yuan-Yuan**(), ZHANG Sheng-Rui**(), WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin*(), SUN Jun-Ming*()
摘要:
大豆营养品质性状多为数量性状, 受多基因调控。目前, 已定位到大量与营养品质性状相关的分子标记, 但经过大豆育种群体验证的可用标记却很少。本研究以288份黄淮海地区选育的大豆品种和19份野生/半野生大豆种质为材料组成大豆自然群体, 利用近红外光谱法、气相色谱法和高效液相色谱法分析其蛋白质、脂肪、脂肪酸和异黄酮组分含量; 选用已报道的与营养品质性状紧密连锁的18个SSR标记, 采用毛细管电泳方法进行基因型鉴定。采用关联分析方法验证分子标记的选择效果, 共检测出与脂肪含量关联的标记3个, 与蛋脂总和关联的标记3个, 与棕榈酸关联的标记1个, 与硬脂酸关联的标记1个, 与油酸关联的标记2个, 与亚麻酸关联的标记2个, 同时发掘出这些位点的优异等位变异, 表明上述验证的分子标记可用于大豆营养品质分子育种中。
[1] |
Caponio G R, Wang D Q, Ciaula A D, Angelis M D, Portincasa P. Regulation of cholesterol metabolism by bioactive components of soy proteins: novel translational evidence. Int J Mol Sci, 2020, 22: 227.
doi: 10.3390/ijms22010227 |
[2] |
Ismail S R, Maarof S K, Ali S S, Ali A. Systematic review of palm oil consumption and the risk of cardiovascular disease. PLoS One, 2018, 13: e0193533.
doi: 10.1371/journal.pone.0193533 |
[3] |
Kris-Etherton P M. AHA science advisory: monounsaturated fatty acids and risk of cardiovascular disease. J Nutr, 1999, 129: 2280-2284.
pmid: 10573564 |
[4] |
Swanson D, Block R, Mousa S A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr, 2012, 3: 1-7.
doi: 10.3945/an.111.000893 |
[5] |
Wilson R F, Burton J W, Brim C A. Progress in the selection for altered fatty acid composition in soybeans. Crop Sci, 1981, 21: 788-791.
doi: 10.2135/cropsci1981.0011183X002100050039x |
[6] | Messina M. Soy foods, isoflavones, and the health of postmenopausal women. Am J Clin Nutr, 2014, 100(S1): 423S-430S. |
[7] |
Lu C, Lyu J W, Jiang N, Wang H X, Huang H, Zhang L J, Li S Y, Zhang N N, Fan B, Liu X M, Wang F Z. Protective effects of genistein on the cognitive deficits induced bychronic sleep deprivation. Phytother Res, 2020, 34: 846-858.
doi: 10.1002/ptr.6567 |
[8] |
Vãzquez L, Flórez A B, Guadamuro L, Mayo B. Effect of soy isoflavones on growth of representative bacterial species from the human gut. Nutrients, 2017, 9: 727.
doi: 10.3390/nu9070727 |
[9] | Zhu J, Ren J, Tang L M. Genistein inhibits invasion and migration of colon cancer cells byrecovering WIF1 expression. Mol Med Rep, 2018, 17: 7265-7273. |
[10] | 范胜栩, 李斌, 孙君明, 韩粉霞, 闫淑荣, 王岚, 王连铮. 气相色谱方法定量检测大豆5种脂肪酸. 中国油料作物学报, 2015, 37: 548-553. |
Fan S X, Li B, Sun J M, Han F X, Yan S R, Wang L, Wang L Z. A quantitative gas chromatographic method for determination of soybean seed fatty acid components. Chin J Oil Crop Sci, 2015, 37: 548-553. (in Chinese with English abstract) | |
[11] |
Sun J M, Sun B L, Han F X, Yan S R, Yang H, Kikuchi A. Rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Agric Sci China, 2011, 10: 101-105.
doi: 10.1016/S1671-2927(11)60312-X |
[12] |
陈影, 张晟瑞, 王岚, 王连铮, 李斌, 孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系. 作物学报, 2019, 45: 1038-1049.
doi: 10.3724/SP.J.1006.2019.84114 |
Chen Y, Zhang S R, Wang L, Wang L Z, Li B, Sun J M. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions. Acta Agron Sin, 2019, 45: 1038-1049. (in Chinese with English abstract) | |
[13] |
宁海龙, 白雪莲, 李文滨, 薛红, 庄煦, 李文霞, 刘春燕. 大豆四向重组自交系群体蛋白质含量与油分含量QTL定位. 作物学报, 2016, 42: 1620-1628.
doi: 10.3724/SP.J.1006.2016.01620 |
Ning H L, Bai X L, Li W B, Xue H, Zhuang X, Li W X, Liu C Y. Mapping QTL protein and oil contents using population from four-way recombinant inbred lines for soybean (Glycine max L. Merr.). Acta Agron Sin, 2016, 42: 1620-1628. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01620 |
|
[14] |
Tajuddin T, Watanabe S, Yamanaka N, Harada K. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci, 2003, 53: 133-140.
doi: 10.1270/jsbbs.53.133 |
[15] |
Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci, 2000, 40: 1438-1444.
doi: 10.2135/cropsci2000.4051438x |
[16] |
Mao T T, Jiang Z F, Han Y P, Teng W, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.12091 |
[17] | 姜振峰. 大豆油分和蛋白质含量遗传效应及与环境互作效应QTL分析. 东北林业大学博士学位论文,黑龙江哈尔滨, 2010. |
Jiang Z F. QTL Analysis on the Genetic Effect and Their Environmental Interactions of Oil and Protein Content in Soybean. PhD Dissertation of Northeast Forestry University, Harbin, Heilongjiang, China, 2010. (in Chinese with English abstract) | |
[18] | 单大鹏. 多年多点条件下大豆油分和蛋白质含量的QTL. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2008. |
Shan D P. QTL Analysis of Protein and Oil Content of Soybean in Multiple Years and Places. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2008. (in Chinese with English abstract) | |
[19] | 于志远, 王伟威, 魏崃, 陈庆山, 赵贵兴, 齐照明, 李杰, 刘丽君. 利用关联分析方法挖掘自然群体中大豆油分和蛋白质含量相关SSR标记. 大豆科学, 2015, 34: 977-981. |
Yu Z Y, Wang W W, Wei L, Chen Q S, Zhao G X, Qi Z M, Li J, Liu L J. Exploiting SSR loci related with soybean oil and protein content by using association analysis in natural population. Soybean Sci, 2015, 34: 977-981. (in Chinese with English abstract) | |
[20] |
Shi A, Chen P, Zhang B, Hou A. Genetic diversity and association analysis of protein and oil content in food-grade soybeans from Asia and the United States. Plant Breed, 2010, 129: 250-256.
doi: 10.1111/j.1439-0523.2010.01766.x |
[21] | 刘顺湖, 周瑞宝, 喻德跃, 陈受宜, 盖钧镒. 大豆蛋白质有关性状的QTL定位. 作物学报, 2009, 35: 2139-2149. |
Liu S H, Zhou R B, Yu D Y, Chen S Y, Gai J Y. QTL mapping of protein related traits in soybean [Glycine max (L.) Merr.]. Acta Agron Sin, 2009, 35: 2139-2149. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.02139 |
|
[22] | 葛振宇, 刘晓冰, 刘宝辉, 阿部纯, 马凤鸣, 孔凡江. 大豆种子蛋白质和油份性状的QTL定位. 大豆科学, 2011, 30: 901-905. |
Ge Z Y, Liu X B, Liu B H, Abe J, Ma F M, Kong F J. QTL mapping of protein and oil content in soybean. Soybean Sci, 2011, 30: 901-905. (in Chinese with English abstract) | |
[23] | Liang H Z, Yu Y L, Wang S F, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J, Zhang M C. QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). J Integr Agric, 2010, 9: 1108-1116. |
[24] | 王涛. 大豆品质及产量相关农艺性状的QTL定位研究. 南京农业大学硕士学位论文,江苏南京, 2012. |
Wang T. QTL Mapping of Quality and Yield Related Agronomic Traits in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2012. (in Chinese with English abstract) | |
[25] |
Orf J H, Chase K, Jarvik T, Mansur L M, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x |
[26] |
Yang K, Moon J K, Jeong N, Chun H K, Kang S T, Back K, Jeong S C. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genomics, 2011, 33: 685-692.
doi: 10.1007/s13258-011-0043-z |
[27] |
Gutierrez-Gonzalez J J, Wu X L, Zhang J, Lee J D, Ellersieck M, Shannon J G, Yu O, Nguyen H T, Sleper D A. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor Appl Genet, 2009, 119: 1069-1083.
doi: 10.1007/s00122-009-1109-z pmid: 19626310 |
[28] |
Meng S, He J B, Zhao T J, Xing G N, Li Y, Yang S P, Lu J J, Wang Y F, Gai J Y. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theor Appl Genet, 2016, 129: 1557-1576.
doi: 10.1007/s00122-016-2724-0 |
[29] |
Yoshikawa T, Okumoto Y, Ogata D, Sayama T, Teraishi M, Terai M, Toda T, Yamada K, Yagasaki K, Yamada N, Tsukiyama T, Yamada T, Tanisaka T. Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breed Sci, 2010, 60: 243-254.
doi: 10.1270/jsbbs.60.243 |
[30] | 裴睿丽. 调控大豆异黄酮含量QTL精细定位及候选基因GmZF-1功能验证. 中国农业科学院硕士学位论文,北京, 2017. |
Pei R L. Fine Mapping of the QTL Underlying Isoflavone Content and Functional Analysis of the Candidate Gene GmZF-1 in Soybean. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2017. (in Chinese with English abstract) | |
[31] |
Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053-1067.
doi: 10.2135/cropsci2003.1053 |
[32] |
Wang J, Zhou P F, Shi X L, Yang N, Yan L, Zhao Q S, Yang C Y, Guan Y F. Primary metabolite contents are correlated with seed protein and oil traits in near-isogenic lines of soybean. Crop J, 2019, 7: 651-659.
doi: 10.1016/j.cj.2019.04.002 |
[33] | 年海, 王金陵, 杨庆凯. 大豆脂肪酸与主要农艺性状和品质性状的相关分析. 大豆科学, 1996, 15: 213-221. |
Nian H, Wang J L, Yang Q K. Correlation analysis between fat acid and main chemical and agronomic traits. Soybean Sci, 1996, 15: 213-221. (in Chinese with English abstract) | |
[34] | 赵雪, 杜雪, 孙晶, 吴瑶, 曹广禄, 韩英鹏, 李文滨, 张彬彬. 多环境大豆种质资源脂肪酸组分评价及其与农艺性状的相关分析. 大豆科学, 2014, 33: 353-357. |
Zhao X, Du X, Sun J, Wu Y, Cao G L, Han Y P, Li W B, Zhang B B. Relation analysis of the fatty acid component content of soybean germplasm and agronomic trait. Soybean Sci, 2014, 33: 353-357. (in Chinese with English abstract) | |
[35] |
Azam M, Zhang S R, Qi J, Abdelghany A M, Shibu A S, Ghosh S, Feng Y, Huai Y Y, Gebregziabher B S, Li J, Li B, Sun J M. Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J Food Compos Anal, 2021, 98: 103803.
doi: 10.1016/j.jfca.2021.103803 |
[36] |
Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed Sci, 2008, 58: 361-366.
doi: 10.1270/jsbbs.58.361 |
[37] | 郑永战, 盖钧镒, 卢为国, 李卫东, 周瑞宝, 田少君. 大豆脂肪及脂肪酸组分含量的QTL定位. 作物学报, 2006, 32: 1823-1830. |
Zheng Y Z, Gai J Y, Lu W G, Li W D, Zhou R B, Tian S J. QTL mapping for fat and fatty acid composition contents in soybean. Acta Agron Sin, 2006, 32: 1823-1830. (in Chinese with English abstract) | |
[38] |
Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-414.
doi: 10.1038/nbt.3096 |
[39] |
Zhang H Y, Goettel W, Song Q J, Jiang H, Hu Z B, Wang M L, An Y C. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet, 2020, 16: e1009114.
doi: 10.1371/journal.pgen.1009114 |
[40] |
Miao L, Yang S N, Zhang K, He J B, Wu C H, Ren Y H, Gai J Y, Li Y. Natural variation and selection in GmSWEET39 affect soybean seed oil content. New Phytol, 2020, 225: 1651-1666.
doi: 10.1111/nph.16250 |
[41] | 叶俊华, 杨启台, 刘章雄, 郭勇, 李英慧, 关荣霞, 邱丽娟. 大豆引进种质抗胞囊线虫病、抗花叶病毒病和耐盐基因型鉴定及优异等位基因聚合种质筛选. 作物学报, 2018, 44: 1263-1273. |
Ye J H, Yang Q T, Liu Z X, Guo Y, Li Y H, Xia L R, Qiu L J. Genotyping of SCN, SMV resistance, salinity tolerance and screening of pyramiding favorable alleles in introduced soybean accessions. Acta Agron Sin, 2018, 44: 1263-1273. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01263 |
|
[42] |
Basu U, Parida S K. Restructuring plant types for developing tailor-made crops. Plant Biotechnol J, 2021-07-14, doi: 10.1111/pbi.13666.
doi: 10.1111/pbi.13666 |
[43] |
Pan W J, Han X, Huang S Y, Yu J Y, Zhao Y, Qu K X, Zhang Z X, Yin Z G, Qi H D, Yu G L, Zhang Y, Xin D W, Zhu R S, Liu C Y, Wu X X, Jiang H W, Hu Z B, Zuo Y H, Chen Q S, Qi Z M. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses. J Integr Agric, 2021, doi: 10.1016/S2095-3119(21)63653-5.
doi: 10.1016/S2095-3119(21)63653-5 |
[44] |
Rosso M L, Shang C, Song Q, Escamilla D, Gillenwater J, Zhang B. Development of breeder-friendly KASP markers for low concentration of Kunitz trypsin inhibitor in soybean seeds. Int J Mol Sci, 2021, 22: 2675.
doi: 10.3390/ijms22052675 |
[1] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[2] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[3] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[4] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[5] | 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821. |
[6] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[7] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[8] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[9] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[10] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[11] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[12] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[13] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[14] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[15] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
|