欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1957-1976.doi: 10.3724/SP.J.1006.2022.14127

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆主要营养品质性状相关分子标记的育种应用潜力评价

怀园园**(), 张晟瑞**(), 武婷婷, 李静, 孙石, 韩天富, 李斌*(), 孙君明*()   

  1. 中国农业科学院作物科学研究所 / 作物分子育种国家工程研究中心 / 农业农村部大豆生物学重点实验室, 北京 100081
  • 收稿日期:2021-07-16 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-13
  • 通讯作者: 李斌,孙君明
  • 作者简介:怀园园, E-mail: 2827973386@qq.com;
    张晟瑞, E-mail: zhangshengrui@caas.cn第一联系人:

    ** 同等贡献

  • 基金资助:
    国家重点研发计划项目(2017YFD0101400);中国农业科学院农业科技创新工程项目(2060302-2)

Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding

HUAI Yuan-Yuan**(), ZHANG Sheng-Rui**(), WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin*(), SUN Jun-Ming*()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Research Center of Crop Molecular Breeding / Key Laboratory of Soybean Biology, the Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2021-07-16 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-13
  • Contact: LI Bin,SUN Jun-Ming
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China(2017YFD0101400);Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(2060302-2)

摘要:

大豆营养品质性状多为数量性状, 受多基因调控。目前, 已定位到大量与营养品质性状相关的分子标记, 但经过大豆育种群体验证的可用标记却很少。本研究以288份黄淮海地区选育的大豆品种和19份野生/半野生大豆种质为材料组成大豆自然群体, 利用近红外光谱法、气相色谱法和高效液相色谱法分析其蛋白质、脂肪、脂肪酸和异黄酮组分含量; 选用已报道的与营养品质性状紧密连锁的18个SSR标记, 采用毛细管电泳方法进行基因型鉴定。采用关联分析方法验证分子标记的选择效果, 共检测出与脂肪含量关联的标记3个, 与蛋脂总和关联的标记3个, 与棕榈酸关联的标记1个, 与硬脂酸关联的标记1个, 与油酸关联的标记2个, 与亚麻酸关联的标记2个, 同时发掘出这些位点的优异等位变异, 表明上述验证的分子标记可用于大豆营养品质分子育种中。

关键词: 大豆, 品质性状, SSR标记, 关联分析, 优异等位变异

Abstract:

Soybean nutritional quality traits are generally quantitative traits and are regulated by multiple genes. At present, a large number of molecular markers related to quality traits have been located, but there were few available markers verified in soybean breeding populations. In this study, we selected 288 soybean varieties from Huang-Huai-Hai region and 19 wild/ semi-wild soybean accessions as a natural population. We analyzed their protein, oil, fatty acid, and isoflavone contents by NIR, GC, and HPLC methods. We selected 18 SSR markers closely linked to quality traits to identify their genotypes by capillary electrophoresis method, and verify the molecular markers associated with nutritional quality traits using association analysis based on the Tassel 2.1 software. The results showed that there were three markers associated with oil content, three markers associated with the content of protein plus oil, one marker associated with palmitic acid, one marker associated with stearic acid, two markers associated with oleic acid, and two markers associated with linolenic acid, and the elite alleles of these loci were also investigated. Our study provided reliable molecular markers for soybean quality molecular breeding.

Key words: soybean (Glycine max L. Merrill), quality traits, SSR markers, association analysis, elite allele

附表1

2017年收集的114份黄淮海地区大豆品种和19份野生/半野生大豆种质"

编号
Number
材料
Accession
编号
Number
材料
Accession
AH.1 皖宿0922 Wansu 0922 HN.14 濮豆793 Pudou 793
AH.2 濉科45 Suike 45 HN.15 商豆1701 Shangdou 1701
AH.3 濉科47 Suike 47 HN.16 周11121-3-1-2 Zhou 11121-3-1-2
AH.4 皖豆0954 Wandou 0954 HN.17 漯5901 Luo 5901
AH.5 皖宿1120 Wansu 1120 HN.18 郑1427 Zheng 1427
AH.6 柳豆104 Liudou 104 HN.19 周11005-10-4-6 Zhou 11005-10-4-6
AH.7 柳豆109 Liudou 109 HN.20 漯4903 Luo 4903
BJ.1 中黄203 Zhonghuang 203 HN.21 安豆5451 Andou 5451
BJ.2 中作J141085 Zhongzuo J141085 HN.22 安豆115 Andou 115
BJ.3 中作J14558 Zhongzuo J14558 HN.23 郑15339 Zheng 15339
BJ.4 中作08-08 Zhongzuo 08-08 HN.24 泛豆9号 Fandou 9
BJ.5 中作11-58 Zhongzuo 11-58 HN.25 泛豆1510 Fandou 1510
BJ.6 中作10-732 Zhongzuo 10-732 HN.26 商豆1712 Shangdou 1712
BJ.7 中黄320 Zhonghuang 320 HN.27 商豆H28 Shangdou H28
BJ.8 中黄73 Zhonghuang 73 HN.28 周11019-2-1 Zhou 11019-2-1
BJ.9 中黄78 Zhonghuang 78 HN.29 洛1305 Luo 1305
BJ.10 中作11-11 Zhongzuo 11-11 HN.30 洛1330 Luo 1330
BJ.11 中作11-54 Zhongzuo 11-54 HN.31 安豆6215 Andou 6215
BJ.12 中作11-719 Zhongzuo 11-719 SD.1 鲁0126 Lu 0126
BJ.13 中黄13(ck) Zhonghuang 13 SD.2 鲁0315-9 Lu 0315-9
BJ.14 中作11-516 Zhongzuo 11-516 SD.3 山大1号 Shanda 1
BJ.15 中作11-817 Zhongzuo 11-817 SD.4 鲁0305-1 Lu 0305-1
BJ.16 中黄321 Zhonghuang 321 SD.5 潍豆12 Weidou 12
BJ.17 中作10-24 Zhongzuo 10-24 SD.6 圣豆7 Shengdou 7
BJ.18 中作10-43 Zhongzuo 10-43 SD.7 圣豆8 Shengdou 8
BJ.19 中作J13319 Zhongzuo J13319 SD.8 道秋17 Daoqiu 17
编号
Number
材料
Accession
编号
Number
材料
Accession
BJ.20 中作J13162 Zhongzuo J13162 SD.9 华豆23 Huadou 23
GS.1 安豆331 Andou 331 SD.10 菏豆34 Hedou 34
GS.2 陇黄3号 Longhuang 3 SD.11 菏豆40 Hedou 40
GS.3 GZ11-295 SD.12 济J14085 Ji J14085
HB.1 沧豆0605 Cangdou 0605 SD.13 济J14110 Ji J14110
HB.2 沧豆09Y2 Cangdou 09Y2 SD.14 鲁0305-2 Lu 0305-2
HB.3 邯15-324 Han 15-324 SD.15 潍豆13 Weidou 13
HB.4 邯13-429 Han 13-429 SD.16 圣豆4号Shengdou 4
HB.5 HN1029-1 SD.17 圣豆17 Shengdou 17
HB.6 HN1018 SD.18 道秋16 Daoqiu 16
HB.7 石501 Shi 501 SD.19 道秋21 Daoqiu 21
HB.8 石273 Shi 273 SD.20 华豆22 Huadou 22
HB.9 冀16-08 Ji 16-08 SD.21 济J14109 Ji J14109
HB.10 冀16-J16 Ji 16-J16 SX.1 汾豆98 Fendou 98
HB.11 HN0901 SX.2 晋遗57 Jinyi 57
HB.12 邯15-296 Han 15-296 SX.3 16品3 16 Pin 3
HB.13 邯15-685 Han 15-685 SX.4 16品10 16 Pin 10
HB.14 石1179 Shi 1179 SX.5 汾豆103 Fendou 103
HB.15 石1064 Shi 1064 SX.6 晋科3号Jinke 3
HB.16 冀16-J10 Ji 16-J10 SX.7 晋遗53 Jinyi 53
HB.17 邯13-99 Han 13-99 SX.a 14B2548
HB.18 石1415 Shi 1415 Semi-wild.1 ZYD00411
HB.19 冀16-12 Ji 16-12 Semi-wild.2 ZYD3612
HB.20 邯13-25 Han 13-25 Semi-wild.3 ZYD00404
HB.21 邯14-34 Han 14-34 Semi-wild.4 ZYD00844
HB.22 石788 Shi 788 Semi-wild.5 ZYD1834
HB.a 中豆4901 Zhongdou 4901 Semi-wild.6 ZYD0001
HB.b 中豆5701 Zhongdou 5701 Semi-wild.7 F0554
HN.1 安豆1498 Andou 1498 Wild.1 ZYD4
HN.2 洛1407 Luo 1407 Wild.2 ZYD3880
HN.3 洛1408 Luo 1408 Wild.3 ZYD00004
HN.4 濮豆561 Pudou 561 Wild.4 ZYD00412
HN.5 周09094-3-4 Zhou 09094-3-4 Wild.5 ZYD00410
HN.6 洛1304 Luo 1304 Wild.6 ZYD00033
HN.7 洛1419 Luo 1419 Wild.7 ZYD00851
HN.8 安豆5240 Andou 5240 Wild.8 ZYD1896
HN.9 安豆6271 Andou 6271 Wild.9 ZYD2512
HN.10 郑15234 Zheng 15234 Wild.10 ZYD3767
HN.11 郑16175 Zheng 16175 Wild.11 ZYD3891
HN.12 泛豆13 Fandou 13 Wild.12 ZYD3263
HN.13 泛豆1301 Fandou 1301

附表2

2019年收集的174份黄淮海地区的大豆品种"

编号
Number
材料
Accession
编号
Number
材料
Accession
AH.8 濉科55 Suike 55 HN.36 泛豆21 Fandou 21
AH.9 皖宿118 Wansu 118 HN.37 泛豆24 Fandou 24
AH.10 皖豆37 Wandou 37 HN.38 濮豆876 Pudou 876
AH.11 皖华518 Wanhua 518 HN.39 郑1803 Zheng 1803
AH.12 柳豆108 Liudou 108 HN.40 郑1824 Zheng 1824
AH.13 宁豆6号 Ningdou 6 HN.41 洛豆1402 Luodou 1402
AH.14 柳豆106 Liudou 106 HN.42 周14042-15 Zhou 14042-15
AH.15 皖宿132 Wansu 132 HN.43 泛豆13 Fandou 13
AH.16 皖宿139 Wansu 139 HN.44 周11017-18 Zhou 11017-18
AH.17 阜豆1803 Fudou 1803 HN.45 濮豆748 Pudou 748
AH.18 阜豆1811 Fudou 1811 HN.46 泛豆23 Fandou 23
AH.19 皖宿013 Wansu 013 HN.47 周14054-10 Zhou 14054-10
AH.20 皖豆35 Wandou 35 HN.48 郑1806 Zheng 1806
AH.21 皖豆39 Wandou 39 HN.49 商豆191 Shangdou 191
AH.22 皖豆1093 Wandou 1093 HN.50 商豆192 Shangdou 192
AH.23 皖宿116 Wansu 116 HN.51 漯8819 Luo 8819
AH.24 阜豆1813 Fudou 1813 JS.1 徐0118-9 Xu 0118-9
AH.25 皖豆0589 Wandou 0589 JS.2 徐豆13 Xudou 13
AH.26 皖豆33 Wandou 33 JS.3 徐0117-26 Xu 0117-26
AH.27 皖豆0630 Wandou 0630 JS.4 苏夏HT020 Suxia HT020
AH.28 皖豆0847 Wandou 0847 NX.1 宁黄34 Ninghuang 34
AH.29 濉科68 Suike 68 SD.22 道秋32 Daoqiu 32
AH.30 濉科71 Suike 71 SD.23 华豆36 Huadou 36
AH.31 益科豆1868 Yikedou 1868 SD.24 圣育8号 Shengyu 8
AH.32 阜豆17187 Fudou 17187 SD.25 华育3号 Huayu 3
AH.33 濉科69 Suike 69 SD.26 圣育6号 Shengyu 6
BJ.21 中作11-69 Zhongzuo 11-69 SD.27 圣育26 Shengyu 26
BJ.22 中黄106 Zhonghuang 106 SD.28 圣豆20 Shengdou 20
BJ.23 中黄107 Zhonghuang 107 SD.29 圣育5号 Shengyu 5
BJ.24 中品18P019 Zhongpin 18P019 SD.30 华豆21 Huadou 21
BJ.25 科豆36 Kedou 36 SD.31 华豆30 Huadou 30
BJ.26 中黄109 Zhonghuang 109 SD.32 菏豆44 Hedou 44
BJ.27 科豆39 Kedou 39 SD.33 嘉黄34 Jiahuang 34
BJ.28 中作182 Zhongzuo 182 SD.34 山宁35 Shanning 35
BJ.29 中作11-518 Zhongzuo 11-518 SD.35 圣豆21 Shengdou 21
BJ.30 中黄223 Zhonghuang 223 SD.36 圣豆23 Shengdou 23
BJ.31 中作181 Zhongzuo 181 SD.37 华豆38 Huadou 38
BJ.32 中黄103 Zhonghuang 103 SD.38 腾育11 Tengyu 11
BJ.33 中黄330 Zhonghuang 330 SD.39 菏豆46 Hedou 46
BJ.34 科豆26 Kedou 26 SD.40 腾育3号Tengyu 3
BJ.35 中作09-32 Zhongzuo 09-32 SD.41 华豆29 Huadou 29
BJ.36 科豆34 Kedou 34 SD.42 济J14187 Ji J14187
BJ.37 中作11-01 Zhongzuo 11-01 SD.43 华豆37 Huadou 37
BJ.38 中作184 Zhongzuo 184 SD.44 圣豆6号Shengdou 6
编号
Number
材料
Accession
编号
Number
材料
Accession
BJ.39 中黄329 Zhonghuang 329 SD.45 山宁33 Shanning 33
BJ.40 中黄222 Zhonghuang 222 SD.46 山宁34 Shanning 34
BJ.41 中黄225 Zhonghuang 225 SD.47 道秋6号 Daoqiu 6
BJ.42 科豆37 Kedou 37 SD.48 山宁27 Shanning 27
BJ.43 中作J16270 Zhongzuo J16270 SD.49 山宁36 Shanning 36
BJ.44 中作J14722 Zhongzuo J14722 SD.50 圣豆103 Shengdou 103
BJ.45 中黄226 Zhonghuang 226 SD.51 华育2号 Huayu 2
BJ.46 中聊606 Zhongliao 606 SD.52 圣豆106 Shengdou 106
BJ.47 中黄105 Zhonghuang 105 SX.8 汾豆106 Fendou 106
BJ.48 中作187 Zhongzuo 187 SX.9 汾豆105 Fendou 105
HB.23 沧豆1327 Cangdou 1327 SX.10 品18 Pin 18
HB.24 邯15-105 Han 15-105 SX.b 陕豆10号 Shaandou 10
HB.25 邯17-638 Han 17-638 SX.c 陕豆5号 Shaandou 5
HB.26 正岩169 Zhengyan 169 SX.d 西农28 Xinong 28
HB.27 沧豆477 Cangdou 477 SX.e 延豆6号 Yandou 6
HB.28 冀18J32 Ji 18J32 SX.f 延豆8号 Yandou 8
HB.29 石116 Shi 116 SX.g 陕青豆1号 Shaanqingdou 1
HB.30 邯豆18 Handou 18 NO.15 Holt
HB.31 邯豆13 Handou 13 NO.16 OAC Talbot
HB.32 石12503 Shi 12503 NO.18 Flint
HB.33 邯16-279 Han 16-279 NO.19 Burlison
HB.34 冀1817 Ji 1817 NO.20 Athow
HB.35 邯豆15 Handou 15 NO.24 NS93-4118
HB.36 冀1801 Ji 1801 NO.25 Flyer
HB.37 邯豆19 Handou 19 AD28 Vinton 81
HB.38 石11893 Shi 11893 AD29 Olympus
HB.39 冀18j30 Ji 18J30 AD32 LN92-12054
HB.40 邯17-76 Han 17-76 AD33 LN92-7369
HB.41 冀1812 Ji 1812 AD34 Jack
HB.42 沧豆1340 Cangdou 1340 AD35 Iroquois
HB.43 石773 Shi 773 AD36 Dilworth
HB.44 CDY1004 AD37 LN89-5699
HB.45 石405 Shi 405 AD39 KS3494
HB.46 石406 Shi 406 AD40 Dennison
HB.c 中豆5901 Zhongdou 5901 AD42 IL2
HB.d 中豆6501 Zhongdou 6501 AD43 Kottman
HB.e 中豆6301 Zhongdou 6301 AD46 Corsica
HB.f 中豆4701 Zhongdou 4701 AD48 Omaha
HB.g 中豆5101 Zhongdou 5101 AD49 LS92-1800
HN.32 周14039-9 Zhou 14039-9 AD50 Calhoun
HN.33 洛豆16112 Luodou 16112 AD51 LD00-2817P
HN.34 郑1802 Zheng 1802 AD52 CF461
HN.35 郑1808 Zheng 1808 AD53 Pennyrile

表1

18个与大豆主要营养品质性状相关的分子标记信息"

表2

大豆品种主要营养品质性状的变异分析"

性状
Trait
年份
Year
极小值
Min.
极大值
Max.
均值
Mean
标准差
SD
变异系数
CV (%)
蛋白质
Protein (%)
2017 36.11 49.68 43.92 2.34 5.33
2019 32.50 47.38 41.76 2.81 6.73
脂肪
Oil (%)
2017 7.37 21.57 17.89 2.49 13.91
2019 17.87 23.65 20.23 1.14 5.63
蛋脂总和
Protein+Oil (%)
2017 52.95 66.82 61.82 2.71 4.38
2019 54.97 66.22 61.99 2.16 3.49
棕榈酸
Palmitic acid (%)
2017 10.12 15.99 11.92 0.97 8.11
2019 10.08 15.13 11.79 0.75 6.36
硬脂酸
Stearic acid (%)
2017 3.19 6.56 4.40 0.61 13.77
2019 3.18 5.52 4.19 0.46 11.03
油酸
Oleic acid (%)
2017 11.00 39.62 25.70 4.96 19.28
2019 17.39 36.98 26.05 3.98 15.30
亚油酸
Linoleic acid (%)
2017 39.86 59.98 51.12 3.55 6.94
2019 42.85 61.82 52.82 3.55 6.72
亚麻酸
Linolenic acid (%)
2017 4.30 14.99 6.80 1.67 24.56
2019 2.99 7.24 5.16 0.64 12.47
异黄酮
Isoflavone (μg g-1)
2017 613.59 6439.62 1689.19 846.00 50.08
2019 607.75 7136.78 1978.17 959.48 48.50

表3

栽培大豆和野生大豆的5种主要营养品质性状差异比较"

性状
Trait
类型
Category
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
差异显著性
P-value
蛋白质 Cultivateda 36.11 49.68 43.79 2.30 5.25 0.1525
Protein (%) Wild/semi-wildb 40.27 48.58 44.70 2.51 5.61
脂肪 Cultivated 15.06 21.57 18.70 1.06 5.65 1.9921E-07
Oil (%) Wild/semi-wild 7.37 16.86 13.04 3.07 23.52
蛋脂总和 Cultivated 56.82 66.82 62.49 2.01 3.22 5.6722E-07
Protein+oil (%) Wild/semi-wild 52.95 63.72 57.74 2.82 4.89
棕榈酸 Cultivated 10.11 14.63 11.74 0.78 6.65 0.0005
Palmitic acid (%) Wild/semi-wild 10.10 15.99 12.98 1.27 9.82
硬脂酸 Cultivated 3.19 6.56 4.47 0.59 13.09 0.0023
Stearic acid (%) Wild/semi-wild 3.20 4.89 3.98 0.58 14.45
油酸 Cultivated 20.37 35.91 26.75 3.49 13.04 0.0004
Oleic acid Wild/semi-wild 11.00 34.98 19.40 7.40 38.15
亚油酸 Cultivated 43.11 56.16 50.60 3.00 5.92 0.0053
Linoleic acid (%) Wild/semi-wild 39.86 59.98 54.22 4.90 9.04
亚麻酸 Cultivated 4.30 9.09 6.37 0.86 13.53 0.0001
Linolenic acid (%) Wild/semi-wild 4.83 14.99 9.41 2.72 28.91
异黄酮 Cultivated 613.59 3908.03 1554.71 695.40 44.73 0.0033
Isoflavone (μg g-1) Wild/semi-wild 873.62 6439.63 2488.95 1187.97 47.73

图1

307份大豆种质的营养品质性状间的Pearson相关系数 *、**和***分别表示在0.05、0.01和0.001水平差异显著。PA: 棕榈酸; SA: 硬脂酸; OA: 油酸; LA: 亚油酸; LNA: 亚麻酸; TIF: 总异黄酮。"

表4

18对SSR标记在大豆种质中的遗传多样性分析"

标记
Marker
基因型数目
Genotype number
主等位基因频率
Major allele frequency
基因多样性
Gene diversity
多态性信息含量
Polymorphism information content
Satt239 12 0.2707 0.8110 0.7849
Satt127 6 0.7643 0.3807 0.3396
Satt452 12 0.5032 0.6765 0.6382
Satt117 8 0.8344 0.2980 0.2900
Satt281 20 0.5478 0.6656 0.6443
Satt291 6 0.6529 0.4660 0.3742
Satt384 7 0.7981 0.3472 0.3268
Satt063 11 0.5080 0.6514 0.6029
Satt581 6 0.6571 0.5017 0.4434
Satt190 10 0.5719 0.5930 0.5393
Satt217 8 0.7588 0.3899 0.3505
Satt367 11 0.3782 0.7893 0.7665
SSR130 23 0.2086 0.9001 0.8927
SSR175 12 0.2236 0.8591 0.8437
Sat_217 13 0.2605 0.8558 0.8408
Satt236 11 0.4745 0.7144 0.6848
Sat_289 24 0.2119 0.8629 0.8486
Satt174 7 0.4528 0.6054 0.5231

图2

307份大豆种质的SSR标记的聚类分析图 亚群I: 绿色; 亚群II: 橙色; 亚群III: 蓝色; 亚群IV: 黑色。"

表5

大豆营养品质性状显著关联的标记位点及其对表型变异的解释率"

标记位点
Marker
蛋白质
Protein
脂肪
Oil
蛋脂总和
Protein+oil
异黄酮
Isoflavone
棕榈酸
Palmitic acid
硬脂酸
Stearic acid
油酸
Oleic acid
亚油酸
Linoleic acid
亚麻酸
Linolenic acid
2017 2019 2017 2019 2017 2019 2017 2019 2017 2019 2017 2019 2017 2019 2017 2019 2017 2019
Sat_217 0.16* 0.14** 0.15** 0.11* 0.10* 0.09*
Satt239 0.26** 0.18** 0.08** 0.15** 0.14* 0.22**
Satt127 0.12** 0.13** 0.09** 0.08* 0.21** 0.05*
Satt452 0.10** 0.25** 0.08** 0.19** 0.08* 0.31** 0.22** 0.21** 0.14* 0.30**
Satt117 0.08** 0.11** 0.06* 0.10* 0.06* 0.22** 0.21** 0.12**
Satt281 0.27** 0.26** 0.29** 0.19* 0.11* 0.28** 0.25** 0.33**
Sat_289 0.27** 0.24** 0.22** 0.32**
Satt384 0.04* 0.29** 0.17** 0.15** 0.05* 0.18** 0.05* 0.09* 0.21**
Satt581 0.11** 0.07* 0.08* 0.10** 0.13**
Satt217 0.16** 0.06** 0.19** 0.11** 0.11** 0.17**
Satt174 0.03* 0.05** 0.08* 0.04*
SSR130 0.16** 0.23**
Satt291 0.06* 0.03* 0.09**
Satt063 0.16**
Satt190 0.12** 0.10* 0.07*
SSR175 0.23** 0.16** 0.13* 0.09* 0.08 0.22**
Satt236 0.07* 0.12** 0.14** 0.08* 0.08* 0.08 0.13*
Satt367 0.12** 0.12* 0.13** 0.13** 0.12** 0.13**

表6

与大豆营养品质性状显著关联位点的等位变异对应表型效应"

性状
Trait
等位变异
Locus-allele
群体
Group
表型效应
Phenotypic effect
典型品种
Typical material
蛋白质 Sat_217-A293 2017 -1.35 (-3.06) 冀16-08 Ji 16-08
Protein 2019 -1.14 (-2.71) 中黄105 Zhonghuang 105
Satt452-A217 2017 -1.85 (-4.19) 沧豆09Y2 Cangdou 09Y2
2019 -2.43 (-5.74) 中黄105 Zhonghuang 105
Satt452-A211 2019 +1.22 (+2.96) 华育2号 Huayu 2
Satt174-A155 2019 +1.95 (+4.69) 邯豆19 Handou 19
Satt236-A214 2019 -1.56 (-3.72) Vinton 81
Satt384-A113 2017 +1.77 (+4.04) ZYD00412
Satt384-A147 2019 -1.64 (-3.80) 中黄105 Zhonghuang 105
Satt384-A150 2019 +1.41 (+3.39) 华育2号 Huayu 2
Satt117-A148 2019 +2.45 (+5.87) 邯豆19 Handou 19
油分 Satt239-A189 2017 +1.33 (+7.58) 16品10 16 Pin 10
Oil 2019 +0.41 (+2.04) KS3494
Satt239-A180 2019 -0.45 (-2.22) 洛豆1402 Luodou 1402
Satt239-A192 2019 +0.62 (+3.08) Flint
Satt127-A226 2017 +1.01 (+5.90) 16品10 16 Pin 10
2019 +0.43 (+2.16) 中黄105 Zhonghuang 105
Satt127-A229 2019 -0.72 (-3.54) 洛豆1402 Luodou 1402
Satt452-A217 2017 +1.64 (+9.27) 晋科3号 Jinke 3
2019 +0.94 (+4.69) 中黄106 Zhonghuang 106
Satt452-A211 2017 +1.13 (+6.52) 16品10 16 Pin 10
Satt384-A147 2017 +3.32 (+21.57) 16品10 16 Pin 10
2019 +0.53 (+2.68) 中黄106 Zhonghuang 106
Satt384-A113 2017 -6.52 (-35.38) ZYD3880
SSR130-A332 2017 +1.51 (+8.60) 晋科3号 Jinke 3
2019 +0.93 (+4.64) 中黄106 Zhonghuang 106
SSR130-A350 2019 -0.56 (-2.76) 山宁27 Shanning 27
SSR130-A356 2019 -0.89 (-4.39) 华育2号 Huayu 2
SSR130-A323 2019 +0.76 (+3.77) KS3494
SSR175-A213 2017 +1.43 (+8.14) 晋科3号 Jinke 3
2019 +0.78 (+3.89) 中黄105 Zhonghuang 105
SSR175-A222 2019 -0.55 (-2.71) 洛豆1402 Luodou 1402
Satt117-A142 2017 +1.47 (+8.79) 16品10 16 Pin 10
Satt281-A179 2019 -0.84 (-4.14) 柳豆106 Liudou 106
Satt281-A230 2019 -0.87 (-4.29) 华育2号 Huayu 2
Satt281-A182 2017 +1.84 (+10.89) 16品10 16 Pin 10
Satt291-A219 2019 +0.37 (+1.85) 中黄106 Zhonghuang 106
Satt291-A216 2019 -0.39 (-1.92) 菏豆46 Hedou 46
Satt581-A131 2017 +1.30 (+7.61) 邯15-296 Han 15-296
Satt581-A143 2017 -2.02 (-11.07) ZYD3880
Satt581-A140 2017 +1.22 (+6.89) 16品10 16 Pin 10
Satt190-A183 2017 +1.76 (+10.45) 16品10 16 Pin 10
Satt190-A189 2017 -2.89 (-15.92) ZYD3891
性状
Trait
等位变异
Locus-allele
群体
Group
表型效应
Phenotypic effect
典型品种
Typical material
Satt190-A186 2019 -0.75 (-3.67) 皖豆35 Wandou 35
Satt190-A222 2019 +0.99 (+4.93) KS3494
Satt367-A210 2019 +0.77 (+3.86) 中黄106 Zhonghuang 106
Satt367-A216 2019 -0.68 (-3.35) 菏豆46 Hedou 46
Satt217-A251 2017 +2.44 (+15.18) 16品10 16 Pin 10
Sat_217-A293 2019 +0.57 (+2.83) 中黄106 Zhonghuang 106
Sat_217-A281 2019 -0.63 (-3.10) 菏豆46 Hedou 46
Satt236-A220 2017 +1.46 (+8.37) 邯15-296 Han 15-296
Satt236-A235 2019 -0.79 (-3.89) 皖豆39 Wandou 39
Sat_289-A266 2017 +1.44 (+8.14) 16品10 16 Pin 10
Sat_289-A269 2019 +0.44 (+2.19) KS3494
Sat_289-A281 2019 -0.61 (-3.00) 洛豆1402 Luodou 1402
Sat_289-A254 2019 -0.64 (-3.15) 菏豆46 Hedou 46
Sat_289-A272 2019 +0.85 (+4.21) 中黄105 Zhonghuang 105
蛋脂总和 Satt452-A211 2017 +1.18 (+1.93) 石788 Shi 788
Protein+Oil 2019 +0.92 (+1.49) 周14042-15 Zhou 14042-15
Satt452-A217 2019 -1.49 (-2.39) 石11893 Shi 11893
Satt367-A210 2017 -0.93 (-1.50) ZYD3880
2019 -1.30 (-2.08) 石11893 Shi 11893
Satt367-A216 2019 +1.07 (+1.73) 周14042-15 Zhou 14042-15
2017 +1.54 (+2.50) 华豆22 Huadou 22
Sat_289-A281 2017 +1.71 (+2.77) 14B2548
2019 +1.21 (+1.96) 周14042-15 Zhou 14042-15
Sat_289-A254 2019 +0.95 (+1.54) 圣豆106 Shengdou 106
Satt239-A192 2019 -1.60 (-2.57) OAC Talbot
Satt127-A226 2019 -0.88 (-1.40) 石11893 Shi 11893
Satt127-A229 2019 +1.06 (+1.71) 周14042-15 Zhou 14042-15
Satt384-A147 2019 -1.12 (-1.78) 石11893 Shi 11893
Satt384-A113 2017 -4.73 (-7.60) ZYD3880
SSR130-A332 2019 -1.24 (-1.99) 石11893 Shi 11893
Satt236-A214 2019 -1.15 (-1.85) Vinton 81
棕榈酸 Satt384-A147 2017 -0.74 (-5.94) 濉科47 Suike 47
Palmitic acid 2019 -0.32 (-2.65) 中黄103 Zhonghuang 103
Satt384-A113 2017 +1.48 (+12.58) ZYD00033
Satt117-A142 2017 -0.72 (-5.78) 濉科47 Suike 47
Satt581-A140 2017 -0.54 (-4.51) 濉科47 Suike 47
Satt581-A143 2017 +0.69 (+5.86) ZYD00033
Satt217-A251 2017 -0.56 (-4.55) 濉科47 Suike 47
Satt367-A228 2019 +0.93 (+7.91) 沧豆1340 Cangdou 1340
硬脂酸 Satt127-A226 2017 +0.39 (+9.46) GZ11-295
Stearic acid 2019 +0.32 (+8.13) LS92-1800
Satt127-A229 2017 -0.45 (-10.01) 泛豆9号 Fandou 9
2019 -0.24 (-5.68) 郑1802 Zheng 1802
性状
Trait
等位变异
Locus-allele
群体
Group
表型效应
Phenotypic effect
典型品种
Typical material
Satt174-A179 2017 +0.38 (+8.99) GZ11-295
2019 +0.18 (+4.39) CF461
Satt174-A161 2017 -0.26 (-5.77) 泛豆9号 Fandou 9
油酸 Sat_217-A284 2019 -2.55 (-9.74) 圣豆20 Shengdou 20
Oleic acid Sat_217-A299 2019 +3.13 (+12.16) 柳豆108 Liudou 108
Sat_217-A287 2017 -3.22 (-12.37) ZYD3880
Satt217-A251 2017 +3.44 (+14.84) HN1018
Satt236-A220 2017 +2.48 (+9.92) HN1018
Satt236-A223 2019 -2.47 (-9.32) 中聊606 Zhongliao 606
Satt236-A235 2019 +2.83 (+11.00) 商豆192 Shangdou 192
Satt239-A180 2019 +2.42 (+9.47) 商豆192 Shangdou 192
Satt367-A231 2019 +2.24 (+8.73) 郑1808 Zheng 1808
Satt384-A113 2017 -8.14 (-30.8) ZYD3263
Satt384-A147 2017 +4.58 (+20.55) HN1018
Satt384-A150 2019 +1.93 (+7.49) 郑1808 Zheng 1808
Satt452-A217 2017 +3.12 (+12.28) 汾豆98 Fendou 98
Satt581-A140 2017 +2.82 (+11.16) HN1018
Satt581-A143 2017 -3.04 (-11.55) ZYD3880
SSR175-A213 2017 +3.44 (+13.76) 濉科47 Suike 47
SSR175-A216 2019 -1.89 (-7.21) 中聊606 Zhongliao 606
SSR175-A234 2019 +1.59 (+6.19) 冀1817 Ji 1817
SSR175-A243 2019 +2.23 (+8.64) 商豆192 Shangdou 192
亚油酸 Satt367-A222 2017 +2.44 (+4.79) ZYD00844
Linoleic acid 2019 +2.13 (+4.04) 中作09-32 Zhongzuo 09-32
Satt367-A231 2019 -2.20 (-4.14) 冀1817 Ji 1817
Sat_217-A299 2019 -2.50 (-4.71) 冀1817 Ji 1817
Satt236-A220 2017 -1.71 (-3.31) HN1018
Satt236-A223 2019 +2.21 (+4.22) 宁豆6号 Ningdou 6
Satt236-A235 2019 -2.67 (-5.03) 冀1817 Ji 1817
Satt239-A174 2017 -1.64 (-3.19) 中作11-58 Zhongzuo 11-58
Satt239-A180 2019 -1.93 (-3.63) 商豆192 Shangdou 192
Satt239-A189 2019 +1.21 (+2.30) 宁豆6号 Ningdou 6
Satt281-A179 2019 -2.19 (-4.13) 冀1817 Ji 1817
Satt384-A113 2017 +3.61 (+7.11) ZYD3263
Satt384-A147 2017 -2.31 (-4.37) HN1018
Satt384-A150 2019 -1.93 (-3.64) 泛豆24 Fandou 24
Satt452-A217 2017 -2.45 (-4.77) 中作11-58 Zhongzuo 11-58
SSR175-A213 2017 -2.56 (-4.95) 中作11-58 Zhongzuo 11-58
SSR175-A216 2019 +1.52 (+2.88) 中聊606 Zhongliao 606
SSR175-A243 2019 -2.25 (-4.24) 商豆192 Shangdou 192
亚麻酸 Sat_217-A284 2019 +0.38 (+7.40) 圣豆20 Shengdou 20
Linolenic acid Sat_217-A287 2017 +1.14 (+17.06) ZYD3880
Sat_289-A254 2019 +0.28 (+5.47) 山宁33 Shanning 33
Sat_289-A269 2019 -0.22 (-4.22) 宁豆6号 Ningdou 6
Satt063-A104 2017 +2.20 (+33.53) ZYD3880
Satt063-A125 2019 -0.38 (-7.32) 中黄103 Zhonghuang 103
Satt063-A143 2017 -0.59 (-8.32) GZ11-295
性状
Trait
等位变异
Locus-allele
群体
Group
表型效应
Phenotypic effect
典型品种
Typical material
Satt063-A146 2019 +0.42 (+8.18) 徐0117-26 Xu 0117-26
Satt127-A226 2017 -0.70 (-9.60) GZ11-295
Satt127-A223 2019 -0.77 (-14.83) 中黄106 Zhonghuang 106
Satt190-A222 2019 -0.54 (-10.31) 宁豆6号 Ningdou 6
Satt217-A251 2017 -1.38 (-17.67) 安豆331 Andou 331
Satt236-A220 2017 -0.73 (-10.43) GZ11-295
Satt239-A174 2019 +0.24 (+4.70) 沧豆1327 Cangdou 1327
Satt281-A182 2017 -0.72 (-10.05) GZ11-295
Satt281-A212 2019 +0.32 (+6.25) 沧豆1327 Cangdou 1327
Satt367-A210 2019 -0.36 (-6.81) 宁豆6号 Ningdou 6
Satt367-A225 2019 +0.27 (+5.27) 沧豆1327 Cangdou 1327
Satt384-A113 2017 +3.45 (+53.11) ZYD3880
Satt384-A147 2017 -1.78 (-21.91) 安豆331 Andou 331
Satt452-A211 2017 -0.62 (-8.78) ZYD0001
Satt581-A131 2017 -0.63 (-8.81) 安豆331 Andou 331
Satt581-A140 2017 -0.75 (-10.86) HN1018
Satt581-A143 2017 +1.07 (+16.25) ZYD3880
SSR175-A213 2017 -0.78 (-11.23) GZ11-295
异黄酮 Sat_217-A299 2017 +563.95 (+37.94) 漯4903 Luo 4903
Isoflavone 2019 +1175.52 (+62.73) 皖豆37 Wandou 37
SSR175-A234 2017 +449.85 (+30.75) 柳豆104 Liudou 104
SSR175-A210 2017 -417.28 (-25.93) 中作11-719 Zhongzuo 11-719
Satt452-A211 2019 +335.85 (+18.66) 皖豆37 Wandou 37
Satt452-A217 2019 -343.70 (-16.88) 中作181 Zhongzuo 181
Satt281-A212 2019 +511.80 (+26.98) 皖豆37 Wandou 37
Satt281-A179 2019 +507.28 (+26.45) 徐0118-9 Xu 0118-9
Satt174-A179 2019 -355.20 (-16.83) 中作181 Zhongzuo 181
Satt174-A155 2019 +692.86 (+36.62) 山宁36 Shanning 36

图3

Satt384-A113等位变异在2017年大豆育种群体中的表型效应 PA: 棕榈酸; OA: 油酸; LA: 亚油酸; LNA: 亚麻酸。"

图4

聚合多个脂肪增效等位变异的大豆品种 红色: 增效等位变异; 绿色: 减效等位变异; 蓝色: 无效等位变异。"

[1] Caponio G R, Wang D Q, Ciaula A D, Angelis M D, Portincasa P. Regulation of cholesterol metabolism by bioactive components of soy proteins: novel translational evidence. Int J Mol Sci, 2020, 22: 227.
doi: 10.3390/ijms22010227
[2] Ismail S R, Maarof S K, Ali S S, Ali A. Systematic review of palm oil consumption and the risk of cardiovascular disease. PLoS One, 2018, 13: e0193533.
doi: 10.1371/journal.pone.0193533
[3] Kris-Etherton P M. AHA science advisory: monounsaturated fatty acids and risk of cardiovascular disease. J Nutr, 1999, 129: 2280-2284.
pmid: 10573564
[4] Swanson D, Block R, Mousa S A. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr, 2012, 3: 1-7.
doi: 10.3945/an.111.000893
[5] Wilson R F, Burton J W, Brim C A. Progress in the selection for altered fatty acid composition in soybeans. Crop Sci, 1981, 21: 788-791.
doi: 10.2135/cropsci1981.0011183X002100050039x
[6] Messina M. Soy foods, isoflavones, and the health of postmenopausal women. Am J Clin Nutr, 2014, 100(S1): 423S-430S.
[7] Lu C, Lyu J W, Jiang N, Wang H X, Huang H, Zhang L J, Li S Y, Zhang N N, Fan B, Liu X M, Wang F Z. Protective effects of genistein on the cognitive deficits induced bychronic sleep deprivation. Phytother Res, 2020, 34: 846-858.
doi: 10.1002/ptr.6567
[8] Vãzquez L, Flórez A B, Guadamuro L, Mayo B. Effect of soy isoflavones on growth of representative bacterial species from the human gut. Nutrients, 2017, 9: 727.
doi: 10.3390/nu9070727
[9] Zhu J, Ren J, Tang L M. Genistein inhibits invasion and migration of colon cancer cells byrecovering WIF1 expression. Mol Med Rep, 2018, 17: 7265-7273.
[10] 范胜栩, 李斌, 孙君明, 韩粉霞, 闫淑荣, 王岚, 王连铮. 气相色谱方法定量检测大豆5种脂肪酸. 中国油料作物学报, 2015, 37: 548-553.
Fan S X, Li B, Sun J M, Han F X, Yan S R, Wang L, Wang L Z. A quantitative gas chromatographic method for determination of soybean seed fatty acid components. Chin J Oil Crop Sci, 2015, 37: 548-553. (in Chinese with English abstract)
[11] Sun J M, Sun B L, Han F X, Yan S R, Yang H, Kikuchi A. Rapid HPLC method for determination of 12 isoflavone components in soybean seeds. Agric Sci China, 2011, 10: 101-105.
doi: 10.1016/S1671-2927(11)60312-X
[12] 陈影, 张晟瑞, 王岚, 王连铮, 李斌, 孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系. 作物学报, 2019, 45: 1038-1049.
doi: 10.3724/SP.J.1006.2019.84114
Chen Y, Zhang S R, Wang L, Wang L Z, Li B, Sun J M. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions. Acta Agron Sin, 2019, 45: 1038-1049. (in Chinese with English abstract)
[13] 宁海龙, 白雪莲, 李文滨, 薛红, 庄煦, 李文霞, 刘春燕. 大豆四向重组自交系群体蛋白质含量与油分含量QTL定位. 作物学报, 2016, 42: 1620-1628.
doi: 10.3724/SP.J.1006.2016.01620
Ning H L, Bai X L, Li W B, Xue H, Zhuang X, Li W X, Liu C Y. Mapping QTL protein and oil contents using population from four-way recombinant inbred lines for soybean (Glycine max L. Merr.). Acta Agron Sin, 2016, 42: 1620-1628. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01620
[14] Tajuddin T, Watanabe S, Yamanaka N, Harada K. Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci, 2003, 53: 133-140.
doi: 10.1270/jsbbs.53.133
[15] Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci, 2000, 40: 1438-1444.
doi: 10.2135/cropsci2000.4051438x
[16] Mao T T, Jiang Z F, Han Y P, Teng W, Zhao X, Li W B. Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed, 2013, 132: 630-641.
doi: 10.1111/pbr.12091
[17] 姜振峰. 大豆油分和蛋白质含量遗传效应及与环境互作效应QTL分析. 东北林业大学博士学位论文,黑龙江哈尔滨, 2010.
Jiang Z F. QTL Analysis on the Genetic Effect and Their Environmental Interactions of Oil and Protein Content in Soybean. PhD Dissertation of Northeast Forestry University, Harbin, Heilongjiang, China, 2010. (in Chinese with English abstract)
[18] 单大鹏. 多年多点条件下大豆油分和蛋白质含量的QTL. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2008.
Shan D P. QTL Analysis of Protein and Oil Content of Soybean in Multiple Years and Places. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2008. (in Chinese with English abstract)
[19] 于志远, 王伟威, 魏崃, 陈庆山, 赵贵兴, 齐照明, 李杰, 刘丽君. 利用关联分析方法挖掘自然群体中大豆油分和蛋白质含量相关SSR标记. 大豆科学, 2015, 34: 977-981.
Yu Z Y, Wang W W, Wei L, Chen Q S, Zhao G X, Qi Z M, Li J, Liu L J. Exploiting SSR loci related with soybean oil and protein content by using association analysis in natural population. Soybean Sci, 2015, 34: 977-981. (in Chinese with English abstract)
[20] Shi A, Chen P, Zhang B, Hou A. Genetic diversity and association analysis of protein and oil content in food-grade soybeans from Asia and the United States. Plant Breed, 2010, 129: 250-256.
doi: 10.1111/j.1439-0523.2010.01766.x
[21] 刘顺湖, 周瑞宝, 喻德跃, 陈受宜, 盖钧镒. 大豆蛋白质有关性状的QTL定位. 作物学报, 2009, 35: 2139-2149.
Liu S H, Zhou R B, Yu D Y, Chen S Y, Gai J Y. QTL mapping of protein related traits in soybean [Glycine max (L.) Merr.]. Acta Agron Sin, 2009, 35: 2139-2149. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.02139
[22] 葛振宇, 刘晓冰, 刘宝辉, 阿部纯, 马凤鸣, 孔凡江. 大豆种子蛋白质和油份性状的QTL定位. 大豆科学, 2011, 30: 901-905.
Ge Z Y, Liu X B, Liu B H, Abe J, Ma F M, Kong F J. QTL mapping of protein and oil content in soybean. Soybean Sci, 2011, 30: 901-905. (in Chinese with English abstract)
[23] Liang H Z, Yu Y L, Wang S F, Lian Y, Wang T F, Wei Y L, Gong P T, Liu X Y, Fang X J, Zhang M C. QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). J Integr Agric, 2010, 9: 1108-1116.
[24] 王涛. 大豆品质及产量相关农艺性状的QTL定位研究. 南京农业大学硕士学位论文,江苏南京, 2012.
Wang T. QTL Mapping of Quality and Yield Related Agronomic Traits in Soybean. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2012. (in Chinese with English abstract)
[25] Orf J H, Chase K, Jarvik T, Mansur L M, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x
[26] Yang K, Moon J K, Jeong N, Chun H K, Kang S T, Back K, Jeong S C. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genomics, 2011, 33: 685-692.
doi: 10.1007/s13258-011-0043-z
[27] Gutierrez-Gonzalez J J, Wu X L, Zhang J, Lee J D, Ellersieck M, Shannon J G, Yu O, Nguyen H T, Sleper D A. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor Appl Genet, 2009, 119: 1069-1083.
doi: 10.1007/s00122-009-1109-z pmid: 19626310
[28] Meng S, He J B, Zhao T J, Xing G N, Li Y, Yang S P, Lu J J, Wang Y F, Gai J Y. Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theor Appl Genet, 2016, 129: 1557-1576.
doi: 10.1007/s00122-016-2724-0
[29] Yoshikawa T, Okumoto Y, Ogata D, Sayama T, Teraishi M, Terai M, Toda T, Yamada K, Yagasaki K, Yamada N, Tsukiyama T, Yamada T, Tanisaka T. Transgressive segregation of isoflavone contents under the control of four QTLs in a cross between distantly related soybean varieties. Breed Sci, 2010, 60: 243-254.
doi: 10.1270/jsbbs.60.243
[30] 裴睿丽. 调控大豆异黄酮含量QTL精细定位及候选基因GmZF-1功能验证. 中国农业科学院硕士学位论文,北京, 2017.
Pei R L. Fine Mapping of the QTL Underlying Isoflavone Content and Functional Analysis of the Candidate Gene GmZF-1 in Soybean. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2017. (in Chinese with English abstract)
[31] Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003, 43: 1053-1067.
doi: 10.2135/cropsci2003.1053
[32] Wang J, Zhou P F, Shi X L, Yang N, Yan L, Zhao Q S, Yang C Y, Guan Y F. Primary metabolite contents are correlated with seed protein and oil traits in near-isogenic lines of soybean. Crop J, 2019, 7: 651-659.
doi: 10.1016/j.cj.2019.04.002
[33] 年海, 王金陵, 杨庆凯. 大豆脂肪酸与主要农艺性状和品质性状的相关分析. 大豆科学, 1996, 15: 213-221.
Nian H, Wang J L, Yang Q K. Correlation analysis between fat acid and main chemical and agronomic traits. Soybean Sci, 1996, 15: 213-221. (in Chinese with English abstract)
[34] 赵雪, 杜雪, 孙晶, 吴瑶, 曹广禄, 韩英鹏, 李文滨, 张彬彬. 多环境大豆种质资源脂肪酸组分评价及其与农艺性状的相关分析. 大豆科学, 2014, 33: 353-357.
Zhao X, Du X, Sun J, Wu Y, Cao G L, Han Y P, Li W B, Zhang B B. Relation analysis of the fatty acid component content of soybean germplasm and agronomic trait. Soybean Sci, 2014, 33: 353-357. (in Chinese with English abstract)
[35] Azam M, Zhang S R, Qi J, Abdelghany A M, Shibu A S, Ghosh S, Feng Y, Huai Y Y, Gebregziabher B S, Li J, Li B, Sun J M. Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J Food Compos Anal, 2021, 98: 103803.
doi: 10.1016/j.jfca.2021.103803
[36] Shibata M, Takayama K, Ujiie A, Yamada T, Abe J, Kitamura K. Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breed Sci, 2008, 58: 361-366.
doi: 10.1270/jsbbs.58.361
[37] 郑永战, 盖钧镒, 卢为国, 李卫东, 周瑞宝, 田少君. 大豆脂肪及脂肪酸组分含量的QTL定位. 作物学报, 2006, 32: 1823-1830.
Zheng Y Z, Gai J Y, Lu W G, Li W D, Zhou R B, Tian S J. QTL mapping for fat and fatty acid composition contents in soybean. Acta Agron Sin, 2006, 32: 1823-1830. (in Chinese with English abstract)
[38] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-414.
doi: 10.1038/nbt.3096
[39] Zhang H Y, Goettel W, Song Q J, Jiang H, Hu Z B, Wang M L, An Y C. Selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet, 2020, 16: e1009114.
doi: 10.1371/journal.pgen.1009114
[40] Miao L, Yang S N, Zhang K, He J B, Wu C H, Ren Y H, Gai J Y, Li Y. Natural variation and selection in GmSWEET39 affect soybean seed oil content. New Phytol, 2020, 225: 1651-1666.
doi: 10.1111/nph.16250
[41] 叶俊华, 杨启台, 刘章雄, 郭勇, 李英慧, 关荣霞, 邱丽娟. 大豆引进种质抗胞囊线虫病、抗花叶病毒病和耐盐基因型鉴定及优异等位基因聚合种质筛选. 作物学报, 2018, 44: 1263-1273.
Ye J H, Yang Q T, Liu Z X, Guo Y, Li Y H, Xia L R, Qiu L J. Genotyping of SCN, SMV resistance, salinity tolerance and screening of pyramiding favorable alleles in introduced soybean accessions. Acta Agron Sin, 2018, 44: 1263-1273. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01263
[42] Basu U, Parida S K. Restructuring plant types for developing tailor-made crops. Plant Biotechnol J, 2021-07-14, doi: 10.1111/pbi.13666.
doi: 10.1111/pbi.13666
[43] Pan W J, Han X, Huang S Y, Yu J Y, Zhao Y, Qu K X, Zhang Z X, Yin Z G, Qi H D, Yu G L, Zhang Y, Xin D W, Zhu R S, Liu C Y, Wu X X, Jiang H W, Hu Z B, Zuo Y H, Chen Q S, Qi Z M. Identification of candidate genes related to soluble sugar contents in soybean seeds using multiple genetic analyses. J Integr Agric, 2021, doi: 10.1016/S2095-3119(21)63653-5.
doi: 10.1016/S2095-3119(21)63653-5
[44] Rosso M L, Shang C, Song Q, Escamilla D, Gillenwater J, Zhang B. Development of breeder-friendly KASP markers for low concentration of Kunitz trypsin inhibitor in soybean seeds. Int J Mol Sci, 2021, 22: 2675.
doi: 10.3390/ijms22052675
[1] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[2] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[3] 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015.
[4] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[5] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[6] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[7] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[10] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[11] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[12] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[13] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[14] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[15] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[2] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[3] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[4] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[5] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[6] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[7] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[8] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[9] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .
[10] 刘珊珊;田福东;高丽辉;王志坤;葛玉君;刁桂珠;李文滨. 大豆7S球蛋白亚基组成对品质性状的影响[J]. 作物学报, 2008, 34(05): 909 -913 .