欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 2088-2099.doi: 10.3724/SP.J.1006.2022.14101

• 耕作栽培·生理生化 • 上一篇    下一篇

钙肥对酸性红壤花生种子萌发及种子际微生物菌群结构的调控

徐扬(), 张智猛, 丁红, 秦斐斐, 张冠初*(), 戴良香*()   

  1. 山东省花生研究所, 山东青岛 266100
  • 收稿日期:2021-06-08 接受日期:2021-11-29 出版日期:2022-08-12 网络出版日期:2021-12-13
  • 通讯作者: 张冠初,戴良香
  • 作者简介:E-mail: xy52120092661@163.com
  • 基金资助:
    国家自然科学基金项目(31901574);国家自然科学基金项目(31971856);山东省现代农业产业技术体系创新团队岗位专家项目(Peanut, SDAIT-04-06)

Regulation of peanut seed germination and spermosphere microbial community structure by calcium fertilizer in acidic red soil

XU Yang(), ZHANG Zhi-Meng, DING Hong, QIN Fei-Fei, ZHANG Guan-Chu*(), DAI Liang-Xiang*()   

  1. Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
  • Received:2021-06-08 Accepted:2021-11-29 Published:2022-08-12 Published online:2021-12-13
  • Contact: ZHANG Guan-Chu,DAI Liang-Xiang
  • Supported by:
    National Natural Science Foundation of China(31901574);National Natural Science Foundation of China(31971856);Modern Agricultural Industry Technical System of Shandong Province(Peanut, SDAIT-04-06)

摘要:

红壤因酸度较大且钙素匮乏, 严重阻碍种子萌发和植物的形态建成, 提高花生出苗、健苗率是酸性红壤花生高效栽培的有效策略之一。钙素营养和种子际土壤微生物对种子萌发均有重要的调控作用, 但二者间的内在联系却知之甚少。为揭示钙素营养对花生种子际微生物菌群结构和萌发的潜在影响, 以花生品种花育20号(Huayu 20, HY20)为材料, 设置不施钙素和外源施钙素盆栽试验, 结合菌群高通量测序对花生萌发出苗过程中的种子际微生物菌群结构进行了深度分析。结果表明: 各处理种子际样本均以厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)为优势细菌门; 子囊菌门(Ascomycota)、担子菌门(Basidiomycota)和被孢霉门(Mortierellomycota)为优势真菌门。CaO的施加, 使厚壁菌门、拟杆菌门、被孢霉门的相对丰度提高, 担子菌门相对丰度降低。另外, 钙素营养增加了有益菌芽孢杆菌属(Bacillus)的数量。对细菌功能预测分析结果表明, 施用钙素后, 与有机物代谢相关的途径(氨基酸转运/代谢、碳水化合物转运等)和抗逆相关的途径(复制重组与修复等)均显著提高, 这在一定程度上改善了红壤花生种子的萌发环境。对真菌营养型预测显示, 钙素处理提高共生菌群数量的同时, 降低了腐生菌群的数量。Redundancy analysis相关性预测分析表明, 施钙后土壤细菌和真菌菌群结构与土壤理化因子钙素和pH均呈负相关性, 并且土壤钙对种子际土壤微生物的多样性影响大于pH。基于上述研究, 酸性红壤施用钙素营养可改善种子际微生物菌群结构, 从而促进花生种子萌发。

关键词: 种子际, 微生物菌群结构, 花生, 酸性红壤, 16S rRNA测序

Abstract:

Acid red soil is characterized by high acid and low calcium, which seriously affects seed germination and plant morphogenesis. Both calcium and spermosphere soil microorganisms play important roles in regulating seed germination, but the mechanisms underlying their relationship are little understood. Improving the emergence and healthy seeding rate of peanut is one of the effective strategies for efficient cultivation of peanut in acidic red soil. To reveal the potential effects of calcium nutrition on the spermosphere microbial community structure and seed germination in peanut, pot experiments were conducted on Huayu 20 (HY20) with or without calcium application, and the spermosphere microbial structure during the germination process was analyzed using high-throughput sequencing. The results showed that Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the dominant fungal phyla in peanut spermosphere. CaO application increased the relative abundance of Firmicutes, Bacteroidetes, and Mortierellomycota, but decreased the relative abundance of Basidiomycota. In addition, calcium application increased the number of beneficial bacteria Bacillus. Function prediction analysis indicated that the pathways related to organic matter metabolism (amino acid transport, and metabolism, carbohydrate transport, and metabolism) and stress resistance (replication, recombination, and repair) were significantly increased after the application of calcium, which improved the germination environment of peanut seeds in acid red soil to a certain extent. FUNGuild trophic modes analysis revealed that the number of symbiotroph was increased while the number of saprotrophs was decreased after CaO application. Redundancy analysis indicated that the bacterial and fungal structure was negatively correlated with soil physical and chemical factors, calcium content and pH value. Moreover, the calcium content in soil may have a greater regulatory effect on soil microbial diversity than pH. Based on the above studies, the application of calcium in acidic red soil can improve spermosphere microbial structure, resulting in promoting seed germination.

Key words: spermosphere, microbial community structure, peanut (Arachis hypogaea L.), acid red soil, 16S rRNA sequencing

图1

花生种子际微生物群落韦恩(Venn)和β多样性分析 A: 不同种子际土壤细菌Venn图; B: 不同种子际土壤真菌Venn图; C: 不同种子际土壤细菌PCoA分析; D: 不同种子际土壤真菌PCoA分析。缩写同表1。"

表1

微生物α多样性指数分析"

样品Sample 细菌Bacteria 真菌Fungi
多样性指数
Diversity index
丰富度指数
Richness index
多样性指数
Diversity index
丰富度指数
Richness index
Shannon Simpson Ace Chao Shannon Simpson Ace Chao
CK 7.96±0.054 a 0.99±0.00060 a 1164.75±163.83 a 1037.81±117.04 a 3.41±0.15 b 0.86±0.017 a 200.07±16.05 b 196.20±13.82 b
CKS 7.90±0.024 a 0.99±0.00020 a 1022.07±92.43 a 925.945±35.82 b 4.68±1.19 a 0.88±0.078 a 223.74±37.47 a 228.76±36.23 a
CaS 7.82±0.027 a 0.99±0.00040 a 938.19±29.57 b 805.094±26.50 c 2.80±0.58 c 0.78±0.045 b 185.64±6.32 c 167.69±15.27 c

图2

各样本微生物菌群结构 A: 门水平花生种子际细菌菌群丰度比例; B: 门水平花生种子际真菌菌群丰度比例; C: 属水平花生种子际细菌菌群丰度比例; D: 属水平花生种子际真菌菌群丰度比例。缩写同表1。"

图3

LEfSe显示外源钙(CaO)对种子际微生物菌群结构特异性调节 A: LEfSe显示种子际细菌菌群结构对外源钙的响应; B: LEfSe显示种子际真菌菌群结构对外源钙的响应。缩写同表1。"

图4

花生种子际微生物代谢功能特点 A: 细菌类群代谢功能相对丰度和多样性; B: 真菌类群功能模式相对丰度。*表示在0.05水平差异显著。缩写同表1。"

图5

各土壤样品细菌和真菌群落与土壤理化因子的相关性分析 A: 各土壤细菌群落与土壤理化因子的相关性分析; B: 各土壤真菌群落与土壤理化因子的相关性分析。缩写同表1。"

图6

施钙与不施钙酸性红壤花生种子发芽率"

[1] 张佳蕾, 郭峰, 孟静静, 于晓霞, 杨莎, 张思斌, 耿耘, 李新国, 万书波. 酸性土施用钙肥对花生产量和品质及相关代谢酶活性的影响. 植物生态学报, 2015, 39: 1101-1109.
doi: 10.17521/cjpe.2015.0107
Zhang J L, Guo F, Meng J J, Yu X X, Yang S, Zhang S B, Geng Y, Li X G, Wan S B. Effects of calcium fertilizer on yield, quality and related enzyme activities of peanut in acidic soil. Chin J Plant Ecol, 2015, 39: 1101-1109 (in Chinese with English abstract).
doi: 10.17521/cjpe.2015.0107
[2] Guo G H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese crop lands. Nature, 2010, 327: 1008-1010.
[3] 孟静静, 孙克香, 张佳蕾, 郭峰, 于晓霞, 万书波, 张思斌, 李新国. 钙肥对酸性土壤春花生生长及产量的影响. 西北农业学报, 2015, 24(5): 113-118.
Meng J J, Sun K X, Zhang J L, Guo F, Yu X X, Wan S B, Zhang S B, Li X G. Effects of calcium fertilizer on growth and yield of spring peanuts in acidic soil. Acta Agric Boreali-Occident Sin, 2015, 24(5): 113-118. (in Chinese with English abstract)
[4] 刘登望, 李林, 张昊, 张博文, 王飞, 王建国, 万书波, 李新国. 耐酸性土壤花生品种筛选及特征研究. 花生学报, 2018, 47(4): 60-65.
Liu D W, Li L, Zhang H, Zhang B W, Wang F, Wang J G, Wan S B, Li X G. Screening and characteristics of peanut varieties resistant to acid soil. J Peanut Sci, 2018, 47(4): 60-65. (in Chinese with English abstract)
[5] 徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉. 种子萌发及其调控的研究进展. 作物学报, 2014, 40: 1141-1156.
Xu H H, Li N, Liu S J, Wang W Q, Wang W P, Zhang H, Cheng H Y, Song S Q. Research progress in seed germination and its control. Acta Agron Sin, 2014, 40: 1141-1156. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.01141
[6] 陈士林, 赵新亮, 卫秀英, 王锐, 袁贵仁. 钙和赤霉素对玉米种子活力的影响. 中国农学通报, 2003, 19(4): 64-67.
Chen S J, Zhao X L, Wei X Y, Wang R, Yuan G R. Effects of calcium and gibberellin on vigor of seeds of maize. Chin Agric Sci Bull, 2003, 19(4): 64-67. (in Chinese with English abstract)
[7] 丁燕, 呼凤兰, 田云亮, 段丽君. 温度、湿度、pH值及NaCl浓度对花生种子萌发的影响. 种子, 2018, 37(4): 95-98.
Ding Y, Hu F L, Tian Y L, Duan L J. Effects of temperature, moisture, pH and NaCl concentration on seed germination of peanut. Seed, 2018, 37(4): 95-98 (in Chinese with English abstract).
[8] Han C, Yang P F. Studies on the molecular mechanisms of seed germination. Proteomics, 2015, 15: 1671-1679.
doi: 10.1002/pmic.201400375
[9] Windstam S, Nelson E B. Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres. Appl Environ Microbiol, 2008, 74: 4285-4291.
doi: 10.1128/AEM.00263-08
[10] Gazzarrini S, Tsai A Y. Hormone cross-talk during seed germination. Essays Biochem, 2015, 58: 151-164.
doi: 10.1042/bse0580151 pmid: 26374893
[11] 张智猛, 慈敦伟, 张冠初, 丁红, 杨吉顺, 戴良香, 张岱. 山东地区盐碱土花生种子际土壤微生物群落结构的研究. 微生物学报, 2017, 57: 582-596.
Zhang Z M, Ci D W, Zhang G C, Ding H, Yang J S, Dai L X, Zhang D. Diversity of microbial community structure in the spermosphere of saline-alkali soil in Shandong area. Acta Microbiol Sin, 2017, 57: 582-596. (in Chinese with English abstract)
[12] 张岱, 杨吉顺, 宋文武, 丁红, 张冠初, 李瀚, 刘国利, 张智猛, 慈敦伟. 盐碱土类型对花生种子萌发过程中种子际土壤菌群结构的影响. 花生学报, 2016, 45(3): 8-15.
Zhang D, Yang J S, Song W W, Ding H, Zhang G C, Li H, Liu G L, Zhang Z M, Ci D W. Effect of saline-alkali soil types on the microflora structure in the spermosphere during germination of peanut seeds. J Peanut Sci, 2016, 45(3): 8-15. (in Chinese with English abstract)
[13] Xu Y, Zhang D, Dai L, Ding H, Ci D, Qin F, Zhang G, Zhang Z. Influence of salt stress on growth of spermosphere bacterial communities in different peanut (Arachis hypogaea L.) cultivars. Int J Mol Sci, 2020, 21: 2131.
doi: 10.3390/ijms21062131
[14] 韩丽珍, 刘畅, 邓兆辉, 朱春艳. 茶树根际细菌菌株对种子萌发及幼苗生长的促生效应及机制初探. 种子, 2019, 38(12): 41-47.
Han L Z, Liu C, Deng Z H, Zhu C Y. Studying on growth-promoting effect and mechanism of strains isolated from tea rhizosphere on seed germination and seeding growth. Seed, 2019, 38(12): 41-47. (in Chinese with English abstract)
[15] 韩丽珍, 林佳静, 郑欢, 邓兆辉. 一株溶磷菌的抗逆促生特性及对种子萌发的研究. 种子, 2019, 38(10): 34-40.
Han L Z, Lin J J, Zheng H, Deng Z H. Study on the stress resistance and growth-promoting characteristic of a phosphate- solubilizing bacteria strain and its effect on seed germination. Seed, 2019, 38(10): 34-40. (in Chinese with English abstract)
[16] Harper J F, Sussman M R, Schaller G E, Putnam-Evans C, Charbonneau H, Harmon A C. A calcium-dependence protein kinase with a regulatory domain similar to calmodulin. Science, 1991, 252: 951-954.
pmid: 1852075
[17] Choi H, Park H J, Park J H, Kim S, Im M Y, Seo H H, Kim Y W, Hwang I, Kim S Y. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol, 2005, 139: 1750-1761.
doi: 10.1104/pp.105.069757
[18] Hepler P K. Calcium: a central regulator of plant growth and development. Plant Cell, 2005, 17: 2142-2215.
pmid: 16061961
[19] 于震宇. 外源钙对盐胁迫下金花葵种子萌发的影响. 现代园艺, 2021, 44(1): 53-54.
Yu Z Y. Effects of exogenous calcium on seed germination of Sunflower under salt stress. Xiandai Hortic, 2021, 44(1): 53-54. (in Chinese)
[20] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应. 作物学报, 2021, 47: 1581-1592.
doi: 10.3724/SP.J.1006.2021.04160
Dai L X, Xu Y, Zhang G C, Shi X L, Qin F F, Ding H, Zhang Z M. Response of rhizosphere bacterial community diversity to salt stress in peanut. Acta Agron Sin, 2021, 47: 1581-1592. (in Chinese with English abstract)
[21] 焦克, 张旭博, 徐梦, 刘晓洁, 安前东, 张崇玉. 藏东南典型暗针叶林不同土壤剖面深度微生物群落特征研究. 生态学报, 2021, 41: 4864-4875.
Jiao K, Zhang X B, Xu M, Liu X J, An Q D, Zhang C Y. Depth-related characteristics of soil microbial community along the soil profile of typical dark coniferous forest in southeast Tibet. Acta Ecol Sin, 2021, 41: 4864-4875. (in Chinese with English abstract)
[22] 张淼, 陈裕凤, 陈龙, 黄飘玲, 韦露玲. 不同地区药用植物两面针根际土壤真菌种群多样性差异分析. 生物技术通报, 2020, 36(9): 167-179.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0667
Zhang M, Chen Y F, Chen L, Huang P L, Wei L L. Difference analysis of the community diversity of fungi in the rhizosphere soil of Zanthoxylum nitidum (Roxb) DC in sifferent regions. Biotechnol Bull, 2020, 36(9): 167-179 (in Chinese with English abstract).
[23] 王文晓, 李小伟, 黄文广, 杨君珑. 蒙古沙冬青根际土壤细菌群落组成及多样性与生态因子相关性研究. 生态学报, 2020, 40: 8660-8671.
Wang W X, Li X W, Huang W G, Yang J L. Correlations between the composition and diversity of bacterial communities and ecological factors in the rhizosphere of Ammopiptanthus mongolicus. Acta Ecol Sin, 2020, 40: 8660-8671 (in Chinese with English abstract).
[24] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响. 作物学报, 2021, 47: 1768-1778.
doi: 10.3724/SP.J.1006.2021.04170
Xue X M, Wu J, Wang X, Bai D M, Hu M L, Yan L Y, Chen Y N, Kang Y P, Wang Z H, Huai D X, Lei Y, Liao B S. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid. Acta Agron Sin, 2021, 47: 1768-1778. (in Chinese with English abstract)
[25] 彭玉龙, 张乾申, 韩丽珍, 孟源. 促烟草种子萌发的细菌菌株筛选及促生特性研究. 中国烟草科学, 2020, 41(5): 68-72.
Peng Y L, Zhang Q S, Han L Z, Meng Y. Screening for bacterial strains promoting seed germination of tobacco and study of their growth-promoting characteristics. Chin Tob Sci, 2020, 41(5): 68-72. (in Chinese with English abstract)
[26] 陈静, 李斌, 曾庆宾, 罗定棋, 王昌全, 陈强, 刘松青, 辜运富. 攀枝花地区烤烟可培养内生固氮菌的多样性. 微生物学报, 2017, 44: 428-437.
Chen J, Li B, Zeng Q B, Luo D Q, Wang C Q, Chen Q, Liu S Q, Gu Y F. Diversity of culturable endophytic diazotrophic bacteria in flue-cured tobacco in Panzhihua. Acta Microbiol Sin, 2017, 44: 428-437. (in Chinese with English abstract)
[27] Kageyama K, Nelson E B. Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol, 2003, 69: 1114-1120.
doi: 10.1128/AEM.69.2.1114-1120.2003
[28] Verona O. The spermosphere. Ann Inst Pasteur (Paris), 1958, 95: 795-798.
[29] 于少鹏, 史传奇, 胡宝忠, 丁俊男, 孟博, 杨春雪. 古大湖湿地盐碱土壤微生物群落结构及多样性分析. 生态学报, 2020, 40: 3764-3775.
Yu S P, Shi C Q, Hu B Z, Ding J N, Meng B, Yang C X. Analysis of microbial community structure and diversity of saline soil in Gudahu Wetland. Acta Ecol Sin, 2020, 40: 3764-3775. (in Chinese with English abstract)
[30] Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria. Ecology (Durham), 2007, 88: 1354-1364.
pmid: 17601128
[31] 王改萍, 阿依古丽·托乎提, 王茹, 祝长青. 新疆乌尔禾地区盐渍土壤耐盐细菌多样性与群落结构研究. 微生物学杂志, 2021, 41(2): 17-26.
Wang G P, Ayiguli T H T, Wang R, Zhu C Q. Study on the diversity and community structure of salt tolerant bacteria in saline alkali soil in Wuerhe. Xinjiang. J Microbiol, 2021, 41(2): 17-26. (in Chinese with English abstract)
[32] 徐扬, 张冠初, 丁红, 慈敦伟, 秦斐斐, 张智猛, 戴良香. 干旱与盐胁迫对花生根际土壤细菌群落结构和花生产量的影响. 应用生态学报, 2020, 31: 1305-1313.
Xu Y, Zhang G C, Ding H, Ci D W, Qin F F, Zhang Z M, Dai L X. Effects of salt and drought stresses on rhizosphere soil bacterial community structure and peanut yield. Chin J Appl Ecol, 2020, 31: 1305-1313. (in Chinese with English abstract)
[33] Kielak A, Pijl A S, Veen J A, Kowalchuk G A. Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol, 2008, 63: 372-382.
doi: 10.1111/j.1574-6941.2007.00428.x pmid: 18205817
[34] Zhang Y G, Cong J, Lu H. Community structure and elevational diversity patterns of soil Acidobacteria. J Environ Sci, 2014, 26: 1717-1724.
doi: 10.1016/j.jes.2014.06.012
[35] Hanson C A, Allison S D, Bradford M A, Wallenstein M D, Treseder K K. Fungal taxa target different carbon sources in forest soil. Ecosystems, 2008, 11: 1157-1167.
doi: 10.1007/s10021-008-9186-4
[36] Egidi E, Delgado-Baquerizo M, Plett J M, Wang J T, Eldridge D J, Bardgett R D, Maestre F T, Singh B K. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat Commun, 2019, 10: 6506-6511.
[37] 伍思宇, 李宝财, 李纪元, 廖健明, 韦晓娟, 傅镜远, 李开祥. 不同树种林下套种金花茶土壤微生物多样性分析. 广西林业科学, 2021, 50(2): 115-124.
Wu S Y, Li B C, Li J Y, Liao J M, Wei X J, Fu J Y, Li K X. Soil microbial diversity of planting Camellia nitidissima under different tree species. Guangxi For Sin, 2021, 50(2): 115-124. (in Chinese with English abstract)
[38] Lopez-Siles M, Duncan S H, Garcia-Gil L J, Martinez-Medina M. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J, 2017, 11: 841-852.
doi: 10.1038/ismej.2016.176 pmid: 28045459
[39] 张林, 丁效东, 王菲, 田芷源, 冯固. 菌丝室接种解磷细菌Bacillus megaterium C4对土壤有机磷矿化和植物吸收的影响. 生态学报, 2012, 32: 4079-4086.
Zhang L, Ding X D, Wang F, Tian Z Y, Feng G. The effects of inoculation with phosphate solubilizing bacteria Bacillus megaterium C4 in the AM fungal hyphosphere on soil organic phosphorus mineralization and plant uptake. Acta Ecol Sin, 2012, 32: 4079-4086. (in Chinese with English abstract)
[40] Yanni Y G, Dazzo F B, Zidan M I. Beneficial endophytic rhizobia as bio fertilizer inoculants for rice and the spatial ecology of this bacteria-plant association. In: Bacteria in Agrobiology:Crop Ecosystems. Berlin: Springer Berlin Heidelberg, 2011. pp 265-294.
[41] 陈瑶, 周寒梅, 何兵, 李维. GA3和IAA组合调控华重楼种子萌发机理初探. 园艺学报, 2020, 47: 321-333.
Chen Y, Zhou H M, He B, Li W. Preliminary study on the regulation mechanism of GA3 and IAA combination in Paris polyphylla var. chinensis seed germination. Acta Hortic Sin, 2020, 47: 321-333. (in Chinese with English abstract)
[42] 刘长征, 姜晓琳, 蔡启忠, 周良云, 杨全. 何首乌根际促生菌的筛选及其对何首乌种子萌发的影响. 中国中药杂志, 2021, 46: 5247-5252.
Liu C Z, Jiang X L, Cai Q Z, Zhou L Y, Yang Q. Screening for growth-promoting bacteria in rhizosphere of Polygonum multiflorum and its effect on seed germination of Polygonum multiflorum. China J Chin Mater Med, 2021, 46: 5247-5252. (in Chinese with English abstract)
[43] 王桔红, 史生晶, 陈文, 甘桂媚, 陈赛娜, 李张伟. 枯草芽孢杆菌和3种放线菌对盐胁迫下鬼针草和鳢肠种子萌发及幼苗生长的影响. 草业学报, 2020, 29(12): 112-120.
Wang J H, Shi S J, Chen W, Gan G M, Chen S N, Li Z W. Effects of Bacillus subtilis and three actinomycetes on seed germination and seedling growth of Bidens pilosa and Eclipta prostrata under salt stress. Acta Pratac Sin, 2020, 29(12): 112-120. (in Chinese with English abstract)
[44] Vurukonda S S K P, Vardharajula S, Shrivastava M, SkZ A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res, 2016, 184: 13-24.
doi: 10.1016/j.micres.2015.12.003 pmid: 26856449
[45] Bouskill N J, Wood T E, Baran R, Ye Z, Bowen B P, Lim H C, Zhou J Z, Van Nostrand J D, Nico P, Northen T R, Silver W L, Brodie E L. Belowground response to drought in a tropical forest soil: I. Changes in microbial functional potential and metabolism. Front Microbiol, 2016, 7: 525.
[46] Ullah A, Akbar A, Luo Q Q, Khan A H, Manghwar H, Shaban M, Yang X Y. Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microb Ecol, 2019, 77: 429-439.
doi: 10.1007/s00248-018-1260-7 pmid: 30196314
[47] Naylor D, Coleman-Derr D. Drought stress and root associated bacterial communities. Front Plant Sci, 2018, 8: 2223.
doi: 10.3389/fpls.2017.02223
[48] Sun J Y, Song Y, Ma Z P, Zhang H J, Yang Z D, Cai Z H, Zhou J. Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom. Mar Environ Res, 2017, 131: 183-194.
doi: 10.1016/j.marenvres.2017.10.002
[49] Li W, Wang M M, Burgaud G, Yu H M, Cai L. Fungal community composition and potential depth-related driving factors impacting distribution pattern and trophic modes from Epi-to abyssopelagic zones of the Western Pacific Ocean. Microb Ecol, 2019, 78: 820-831.
doi: 10.1007/s00248-019-01374-y
[50] 陈祖静, 高尚坤, 陈园, 何平会, 何茜, 邱权, 李吉跃. 短期施肥对桉树人工林土壤真菌群落结构及功能类群的影响. 生态学报, 2020, 40: 3813-3821.
Chen Z J, Gao S K, Chen Y, He P H, He Q, Qiu Q, Li J Y. Effects of short-term fertilization on soil fungal community structure and functional group in Eucalyptus artificial forest. Acta Ecol Sin, 2020, 40: 3813-3821. (in Chinese with English abstract)
[51] Igiehon N O, Babalola O O. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol, 2017, 101: 4871-4881.
doi: 10.1007/s00253-017-8344-z
[52] 陈乾丽, 汪汉成, 梁永进, 蔡刘体, 黄宇, 周浩, 李忠, 韩洁. 烤后健康烟叶和霉烂烟叶真菌群落结构分析. 浙江农业学报, 2020, 32: 1019-1028.
Chen Q L, Wang H C, Liang Y J, Cai L T, Huang Y, Zhou H, Li Z, Han J. Fungal composition and diversity analysis of healthy and rotten tobacco leaves after curing. Acta Agric Zhejiangensis, 2020, 32: 1019-1028. (in Chinese with English abstract)
[53] Anthony M A, Frey S D, Stinson K A. Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere, 2017, 8: e01951.
[1] 张胜忠, 胡晓辉, 慈敦伟, 杨伟强, 王菲菲, 邱俊兰, 张天雨, 钟文, 于豪諒, 孙冬平, 邵战功, 苗华荣, 陈静. 基于三维模型重构的花生网纹厚度性状QTL分析[J]. 作物学报, 2022, 48(8): 1894-1904.
[2] 白冬梅, 薛云云, 黄莉, 淮东欣, 田跃霞, 王鹏冬, 张鑫, 张蕙琪, 李娜, 姜慧芳, 廖伯寿. 不同花生品种芽期耐寒性鉴定及评价指标筛选[J]. 作物学报, 2022, 48(8): 2066-2079.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[9] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[10] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[11] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[12] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[13] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[14] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[15] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .