作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2902-2912.doi: 10.3724/SP.J.1006.2023.24287
邱杰, 王泰, 蔡博伟(), 段圣省, 徐林珊, 陈晓迪, 王晶, 葛贤宏(), 李再云
QIU Jie, WANG Tai, CAI Bo-Wei(), DUAN Sheng-Xing, XU Lin-Shan, CHEN Xiao-Di, WANG Jing, GE Xian-Hong(), LI Zai-Yun
摘要:
多倍化导致物种的基因组趋于复杂, 基因拷贝数增多, 为性状的遗传解析及基因定位、功能分析带来挑战。染色体片段缺失往往导致相应的表型变化, 而控制这些表型的基因就位于缺失片段内。根据这个原理可以利用染色体缺失品系迅速、准确地将相关基因定位于特定染色体上/染色体区段内。本研究以紫株、黄花埃塞俄比亚芥(Brassica carinata, BcBcCcCc, 2n=34)为母本与绿株、白花芥蓝(Brassica oleracea, CoCo, 2n=18)杂交合成同源异源六倍体(BcBcCcCcCoCo)。在杂种幼胚培养、加倍过程中, 同一个幼胚愈伤组织中分化出2种表型不同的六倍体植株: 紫株、淡黄花与绿株、白花。细胞学观察、荧光原位杂交、基因组重测序分析表明与紫株相比, 绿株基因组B04染色体存在大片段缺失。转录组分析表明, 缺失区段内的DFR基因以及位于参考基因组B03染色体上的MYB90基因可能为控制紫株六倍体紫色形成的关键基因; 而位于缺失区段内的Z-ISO以及CRTISO2则是控制黄色花瓣形成的关键基因。
[1] |
Van De Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet, 2017, 18: 411-424.
doi: 10.1038/nrg.2017.26 pmid: 28502977 |
[2] |
Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity, 2013, 110: 99-104.
doi: 10.1038/hdy.2012.79 pmid: 23149459 |
[3] |
Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008, 53: 814-827.
doi: 10.1111/tpj.2008.53.issue-5 |
[4] |
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J, 2008, 54: 733-749.
doi: 10.1111/j.1365-313X.2008.03447.x |
[5] |
Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol, 2014, 19: 81-90.
doi: 10.1016/j.pbi.2014.05.011 pmid: 24907528 |
[6] | 宋建辉, 郭长奎, 石敏. 植物花青素生物合成及调控. 分子植物育种, 2021, 19: 3612-3620. |
Song J H, Guo C K, Shi M. Anthocyanin biosynthesis and regulation in plants. Mol Plant Breed, 2021, 19: 3612-3620 (in Chinese with English abstract). | |
[7] |
Albert N W, Griffiths A G, Cousins G R, Verry I M, Williams W M. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. New Phytol, 2015, 205: 882-893.
doi: 10.1111/nph.13100 pmid: 25329638 |
[8] |
Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J, 2011, 65: 771-784.
doi: 10.1111/tpj.2011.65.issue-5 |
[9] |
Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics, 2013, 13: 75-98.
doi: 10.1007/s10142-012-0301-4 |
[10] | 王紫璇, 李佳佳, 于旭东, 蔡泽坪, 罗佳佳, 徐芷蕙. 高等植物类胡萝卜素生物合成研究进展. 分子植物育种, 2021, 19: 2627-2637. |
Wang Z X, Li J J, Yu X D, Cai Z P, Luo J J, Xu Z H. Research progress in carotenoid biosynthesis in higher plants. Mol Plant Breed, 2021, 19: 2627-2637 (in Chinese with English abstract). | |
[11] | 樊宝莲, 王晓云. 转录因子调控植物类胡萝卜素合成途径的研究进展. 分子植物育种, 2021, 19: 4401-4408. |
Fan B L, Wang X Y. Research progress in regulation of carotenoid biosynthesis by transcriptional factors in plants. Mol Plant Breed, 2021, 19: 4401-4408 (in Chinese with English abstract). | |
[12] |
Ruiz-Sola M A, Rodriguez-Concepcion M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book, 2012, 10: e0158.
doi: 10.1199/tab.0158 |
[13] |
Zhang B, Liu C, Wang Y, Yao X, Wang F, Wu J, King G J, Liu K. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4gene converts flower colour from white to yellow in Brassica species. New Phytol, 2015, 206: 1513-1526.
doi: 10.1111/nph.13335 pmid: 25690717 |
[14] |
Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol, 2006, 142: 1193-1201.
pmid: 16980560 |
[15] |
Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z. Brassica rapa genome sequencing project C. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035-1039.
doi: 10.1038/ng.919 |
[16] |
Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 5: 3930.
doi: 10.1038/ncomms4930 |
[17] |
Perumal S, Koh C S, Jin L, Buchwaldt M, Higgins E E, Zheng C, Sankoff D, Robinson S J, Kagale S, Navabi Z K, Tang L, Horner K N, He Z, Bancroft I, Chalhoub B, Sharpe A G, Parkin I A P. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat Plants, 2020, 6: 929-941.
doi: 10.1038/s41477-020-0735-y |
[18] |
Parkin I A, Koh C, Tang H, Robinson S J, Kagale S, Clarke W E, Town C D, Nixon J, Krishnakumar V, Bidwell S L, Denoeud F, Belcram H, Links M G, Just J, Clarke C, Bender T, Huebert T, Mason A S, Pires J C, Barker G, Moore J, Walley P G, Manoli S, Batley J, Edwards D, Nelson M N, Wang X, Paterson A H, King G, Bancroft I, Chalhoub B, Sharpe A G. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol, 2014, 15: R77.
doi: 10.1186/gb-2014-15-6-r77 |
[19] |
Guo N, Cheng F, Wu J, Liu B, Zheng S, Liang J, Wang X. Anthocyanin biosynthetic genes in Brassica rapa. BMC Genomics, 2014, 15: 426.
doi: 10.1186/1471-2164-15-426 |
[20] | Mushtaq M A, Pan Q, Chen D, Zhang Q, Ge X, Li Z. Comparative leaves transcriptome analysis emphasizing on accumulation of anthocyanins in Brassica: molecular regulation and potential interaction with photosynthesis. Front Plant Sci, 2016, 7: 311. |
[21] |
Chen D, Liu Y, Yin S, Qiu J, Jin Q, King G J, Wang J, Ge X, Li Z. Alternatively spliced BnaPAP2.A7 isoforms play opposing roles in anthocyanin biosynthesis of Brassica napus L. Front Plant Sci, 2020, 11: 983.
doi: 10.3389/fpls.2020.00983 |
[22] |
Heng S, Cheng Q, Zhang T, Liu X, Huang H, Yao P, Liu Z, Wan Z, Fu T. Fine-mapping of the BjPur gene for purple leaf color in Brassica juncea. Theor Appl Genet, 2020, 133: 2989-3000.
doi: 10.1007/s00122-020-03634-9 |
[23] |
He Q, Wu J Q, Xue Y H, Zhao W B, Li R, Zhang L G. The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage (Brassica rapa L.). Hortic Res, 2020, 7: 97.
doi: 10.1038/s41438-020-0319-z |
[24] | Yan C H, An G H, Zhu T, Zhang W Y, Zhang L, Peng L Y, Chen J J, Kuang H H. Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theor Appl Genets, 2019, 132: 895-906. |
[25] | 谭晨. 甘蓝型油菜中基因表达的剂量效应及甘蓝-黑芥附加系的创建. 华中农业大学博士学位论文, 湖北武汉, 2017. |
Tan C. The Dose-effect of Gene Expression in Brassica napus and the Establishment of Brassica napus-B. nigra Addition Lines. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract). | |
[26] | Schelfhout C J, Snowdon R, Cowling W A, Wroth J M. A PCR based B-genome-specific marker in Brassica species. Theor Appl Genets, 2004, 109: 917-921. |
[27] |
Alix K, Joets J, Ryder C D, Moore J, Barker G C, Bailey J P, King G J, Heslop-Harrison J S. The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J, 2008, 56: 1030-1044.
doi: 10.1111/tpj.2008.56.issue-6 |
[28] |
Xiong Z, Pires J C. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics, 2011, 187: 37-49.
doi: 10.1534/genetics.110.122473 |
[29] | Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. EMBnet J, 2011, 17: 10-12. |
[30] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404 |
[31] |
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013, 14: R36.
doi: 10.1186/gb-2013-14-4-r36 |
[32] |
Anders S, Pyl P T, Huber W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31: 166-169
doi: 10.1093/bioinformatics/btu638 pmid: 25260700 |
[33] |
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171 |
[34] |
Yoo M J, Liu X, Pires J C, Soltis P S, Soltis D E. Nonadditive gene expression in polyploids. Annu Rev Genet, 2014, 48: 485-517.
doi: 10.1146/genet.2014.48.issue-1 |
[35] |
Song Q, Chen Z J. Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol, 2015, 24: 101-109.
doi: 10.1016/j.pbi.2015.02.007 pmid: 25765928 |
[36] |
Birchler J A. Aneuploidy in plants and flies: the origin of studies of genomic imbalance. Semin Cell Dev Biol, 2013, 24: 315-319.
doi: 10.1016/j.semcdb.2013.02.004 pmid: 23422884 |
[37] |
Birchler J A, Veitia R A. The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell, 2007, 19: 395-402.
doi: 10.1105/tpc.106.049338 pmid: 17293565 |
[38] | 李群睿. 玉米类胡萝卜素异构酶和番茄红素ε-环化酶基因的克隆与鉴定. 东北师范大学博士学位论文,吉林长春, 2010. |
Li Q R. Cloning and Identification of Genes Coding Carotenoid Isomerase and Lycopene ε-cyclase in Corn. PhD Dissertation of Northeast Normal University Library, Changchun, Jilin, China, 2010 (in Chinese with English abstract). |
[1] | 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995. |
[2] | 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249. |
[3] | 黄婷苗, 詹昕, 陆乃昆, 乔月静, 陈杰, 杨珍平, 高志强. 叶喷有机硒对黑糯玉米硒吸收及籽粒花青素和铁锰铜锌的影响[J]. 作物学报, 2023, 49(10): 2845-2853. |
[4] | 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682. |
[5] | 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812. |
[6] | 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839. |
[7] | 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436. |
[8] | 易秋香,刘英,常存,钟瑞森. 基于光谱指数和偏最小二乘的棉花类胡萝卜素/叶绿素a比值估算[J]. 作物学报, 2020, 46(8): 1266-1274. |
[9] | 申状状,李昱樱,荣二花,吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634. |
[10] | 岳芳,汪雷,陈燕桂,忻晓霞,李勤菲,梅家琴,熊志勇,钱伟. 利用异源六倍体(A rA rA nA nC nC n)与甘蓝种间杂交合成甘蓝型油菜的新方法[J]. 作物学报, 2019, 45(2): 188-195. |
[11] | 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612. |
[12] | 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713. |
[13] | 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 . |
[14] | 刘敏轩,陆平. 中国谷子育成品种维生素E含量分布规律及其与主要农艺性状和类胡萝卜素的相关性分析[J]. 作物学报, 2013, 39(03): 398-408. |
[15] | 王涛,袁守江,尹亮,赵金凤,万建民,李学勇. 水稻DUS测试标准品种丛矮2号矮化多分蘖表型的遗传基础[J]. 作物学报, 2012, 38(10): 1766-1774. |
|