欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2902-2912.doi: 10.3724/SP.J.1006.2023.24287

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

芸薹属同源异源六倍体(BcBcCcCcCoCo)染色体片段缺失的鉴定及其在色泽形成基因定位中的应用

邱杰, 王泰, 蔡博伟(), 段圣省, 徐林珊, 陈晓迪, 王晶, 葛贤宏(), 李再云   

  1. 华中农业大学植物科学技术学院, 湖北武汉 430070
  • 收稿日期:2022-12-30 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-16
  • 通讯作者: 葛贤宏, E-mail: gexianhong@mail.hzau.edu.cn; 蔡博伟: E-mail: caibowei_92@126.com
  • 作者简介:E-mail: j-1020@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFD1600505)

Identification of chromosome deletion in synthesized Brassica auto-allohexaploids and its application in mapping genes of pigment synthesis

QIU Jie, WANG Tai, CAI Bo-Wei(), DUAN Sheng-Xing, XU Lin-Shan, CHEN Xiao-Di, WANG Jing, GE Xian-Hong(), LI Zai-Yun   

  1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-12-30 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-16
  • Supported by:
    National Key Research and Development Program of China(2021YFD1600505)

摘要:

多倍化导致物种的基因组趋于复杂, 基因拷贝数增多, 为性状的遗传解析及基因定位、功能分析带来挑战。染色体片段缺失往往导致相应的表型变化, 而控制这些表型的基因就位于缺失片段内。根据这个原理可以利用染色体缺失品系迅速、准确地将相关基因定位于特定染色体上/染色体区段内。本研究以紫株、黄花埃塞俄比亚芥(Brassica carinata, BcBcCcCc, 2n=34)为母本与绿株、白花芥蓝(Brassica oleracea, CoCo, 2n=18)杂交合成同源异源六倍体(BcBcCcCcCoCo)。在杂种幼胚培养、加倍过程中, 同一个幼胚愈伤组织中分化出2种表型不同的六倍体植株: 紫株、淡黄花与绿株、白花。细胞学观察、荧光原位杂交、基因组重测序分析表明与紫株相比, 绿株基因组B04染色体存在大片段缺失。转录组分析表明, 缺失区段内的DFR基因以及位于参考基因组B03染色体上的MYB90基因可能为控制紫株六倍体紫色形成的关键基因; 而位于缺失区段内的Z-ISO以及CRTISO2则是控制黄色花瓣形成的关键基因。

关键词: 芸薹属, 六倍体, 染色体缺失, 花青素, 类胡萝卜素

Abstract:

Polyploidy leads to the complexity of individual genomes and an increase of gene copies, which brings challenges to the genomic and genetic analysis. The deletion of a chromosome or chromosome fragment often leads to corresponding phenotypic changes, and the genes controlling these traits are located within the deleted fragments. According to this principle, chromosome deletion was usually used to map genes in a specific chromosome or chromosome fragment. In this study, a Brassica auto-allohexaploid (BcBcCcCcCoCo) was synthesized by the hybridization between B. carinata (2n = 34, BcBcCcCc) and B. oleracea (CoCo, 2n = 18). Two young hexaploid plants were differentiated from the callus of the same immature embryo during embryo rescue on MS medium with colchicine and hormone. However, while one plant showed purple leaves and stems and light-yellow flowers as its maternal parent B. carinata, the other plant had green leaves and stems and white flowers like the paternal parent B. oleracea. Cytological observation, fluorescence in situ hybridization (FISH), and genome re-sequencing analysis showed that a large fragment of chromosome B04 was absent in green plant. Transcriptome analysis showed DFR gene in the deletion region and MYB90 on the reference genome B03 chromosome may be the key genes controlling the purple color formation on leaves and stems, while Z-ISO and CRTISO2 were two genes within deletion region determining the formation of yellow flowers in hexaploids.

Key words: Brassica, hexaploids, chromosome deletion, anthocyanin, carotenoids

图1

同源异源六倍体(CcCcCoCoBcBc)创建过程 BcBcCcCc为埃塞俄比亚芥, CoCo为芥蓝, CcCoBc为埃塞俄比亚芥与芥蓝的三倍体杂交种, CcCcCoCoBcBc代表六倍体, 紫色与绿色分别代表植株的外观为紫色及绿色。"

附表1

B基因组染色体特异引物"

引物名称Primer
name
连锁群Linkage
group
距离
Distance from top
正向引物序列
Forward sequence (5°-3°)
反向引物序列
Reverse sequence (5°-3°)
片段大小
Expected
product size (bp)
sJ4933 J11 27.8 TGCAATCAGATCCGACTCAG CTTGCAAATATTCAGGCCGT 335-341
sJ3891 J11 61.4 TAAACTTGTTGCAGGGGGTT GTTTGATTGCGTGGCAGTAA 100-110
sJ3302RI J12 10.0 AAATAACCTGCGACGGTGAC GGGGCAAAAGGAACTTGAG 392-409
sB4817R J12 65.8 AGCTTTTCGGTGGGTAAAGA GCCAGTTAGCGAGTCTTTGG 250-364
sB1822 J13 17.5 TCGTTTATCCCGCGTTTATC GCACGTTTCTTGCAGACTGA 250-267
sB1752 J13 61.5 AATGGACTCGTCCGTTATGC TGCGTCTACCACAGACGAAG 406-422
sB2131 J14 0 GTTGCGGTCTCAAGAAGAGG CCGCTTTAAAAATGCAGCTC 311-321
sA0306 J14 16.8 TGGGGTGGGTCTTAAATGAA CCGTTTTAAGCCATGGAAGA 362-396
sB0372 J14 20.1 CACACTGCCATCTCTCTCCA ACGCCGGTTGATATTAGCAC 233-245
sB2141AI J14 26.8 CCCAAATCCGTGGCTACTTA TATGATTGGTGGATGGCAAA 381-389
sB1935A J14 40.4 CCTGCATGAAGGAACGTTTT AATTCATGGAAACGGCTGTC 257-260
sJ8033 J14 47.7 TTTACGGTTTGGTTTGGCTC GCTTGACGGCTGAAGAAAAT 150-225
sJ3874I J15 9.9 ACAACATTTTCCATTCCCCA ATGAGGTTTCATCCCGACAG 164-185
sB3872 J15 60.9 ACAGAAGCATTAGGCGAGGA TCCATATAATCACCGCACGA 176-183
sJ7104 J16 35.5 TCCGCTGTCACGATTATGAA GCTGCAGGGAAACTTGAGAC 322-337
sJ3640I J16 82.9 CCACTCTCAATCTTCGAGCC TGGTTGGTTTCAAGACAAAAGA 327-346
sJ13133 J17 25.8 AACCAAACCAAACCAAGTCG GGCATCGATCAAGTGACCTT 294-300
sJ4633 J17 64.4 CCCGGAAAATAAATGAAAACAA AACCTGAACGCCATTTTCAC 307-312
sJ34121 J18 24.8 TGCTTAAGTCCATCAATGCG ACTGATCGAAATGGACTCGG 320-340
sB5162 J18 62.9 CACGGCTCTCAACTCTTTTG CTGATGAGCTCGAAACCGAT 274-316

图2

紫株与绿株六倍体植株形态比较 A~B、C~D、E、F、G分别为2种六倍体幼苗、花蕾、角果、花及成株期的表现。A, C, E (上)、F (左), G (左)为紫株; B, D, E (下)、F (右), G (右)为绿株。A~F, 标尺为2 cm; G, 标尺为10 cm。"

图3

2种六倍体细胞学观察与原位杂交分析 A、D: 有丝分裂中期细胞。B、C、E、F: 花粉母细胞荧光原位杂交分析, B、E为减数分裂终变期(单色探针), C、F为第1次分离末期(双色探针); A、B、C紫株; D、E、F绿株。B、E中绿色信号来自B基因组着丝粒特异重复探针, 而蓝色为DAPI负染染色体, 指示为C基因组染色体。C、F图中, 红色为C基因组特异性重复序列探针信号, 绿色为B基因组着丝粒重复序列探针信号。C图中的红色箭头指示B基因组染色体(标尺: 10 μm)。"

图4

B基因组染色体特异标记检测 HR-R与HR-G分别代表紫株为及绿株六倍体(CcCcCoCoBcBc), BBCC为埃塞俄比亚芥, CC为芥蓝, CCB为埃塞俄比亚芥与芥蓝的三倍体杂交种, M为marker。"

图5

2种六倍体B04染色体重测序reads的对比分析"

图6

B基因组染色体基因表达量比较"

表1

2种六倍体叶片中花青素合成调控基因的表达分析"

基因号
Gene ID
基因名称
Gene name
基因位置Location 基因表达量Gene expression value (FPKM) P-adj值
P-adj value
绿1
Green 1
绿2
Green 2
绿3
Green 3
紫1
Purple 1
紫2
Purple 2
紫3
Purple 3
BjuB042150 PAL1 B01 59 43 65 8 9 9 7.13E-20
Bol025522 PAL1 C04 309 235 402 686 885 1275 3.83E-24
Bol037689 PAL1 C04 389 288 495 970 1161 1770 6.05E-27
BjuB041653 PAL1 B06 149 104 199 246 324 521 6.47E-11
Bol005411 PAL2 C06 106 113 116 397 498 626 2.32E-53
Bol004610 C4H C03 180 141 234 327 339 520 2.47E-13
Bol033347 C4H C04 72 119 83 3 2 21 3.43E-07
BjuB026422 C4H B01 4 2 2 181 202 218 8.87E-08
Bol026623 4CL5 C03 120 110 160 187 253 276 4.19E-12
Bol012584 4CL3 C06 294 259 302 451 507 601 3.29E-16
BjuB043976 4CL3 B03 28 9 16 96 113 156 1.62E-16
Bol043396 CHS C09 789 301 1009 1448 1855 1824 3.57E-07
Bol034259 CHS C03 217 70 295 2867 3304 4032 1.32E-36
BjuB012368 CHS B05 645 410 790 1597 1797 1863 1.76E-19
BjuB012366 CHS B05 55 28 70 122 197 157 2.22E-10
BjuB014803 CHS B08 65 16 90 202 260 362 5.99E-10
Bol044343 CHI C08 50 19 57 123 144 287 7.54E-11
BjuB044274 F3'H B02 2 2 0 20 18 40 2.55E-07
Bol043829 F3'H C09 9 14 25 614 701 1177 9.51E-88
BjuB001305 DFR B04* 0 0 0 682 887 827 1.60E-25
Bol042059 ANS(LDOX) C07 89 96 90 420 474 492 4.66E-45
BjuB044852 ANS (LDOX) B02 78 66 96 184 225 348 9.32E-33
BjuB014115 ANS (LDOX) B05 4 10 6 474 405 424 5.45E-55
Bol014986 ANS (LDOX) C01 10 15 11 2981 3408 3924 3.28E-210
Bol027055 UGT75C1 C08 10 17 7 2500 3037 3696 2.17E-192
Bol038805 UGT79B1 C09 0 0 2 236 245 294 7.62E-18
BjuB035464 TT19 B02 36 25 26 76 62 102 8.82E-08
BjuB013191 TT19 B05 452 383 574 1012 1158 1550 2.87E-34
Bol021325 TT19 C02 15 11 17 655 750 1075 6.61E-113
Bol019821 TT19 C09 4 4 3 533 696 884 1.44E-65
BjuB046545 MYB12 B06 8 17 12 38 46 76 1.15E-08
Bol016164 MYBL2 C06 45 39 68 445 532 343 2.83E-32
BjuB043935 MYB90 (PAP2) B03 0 0 0 4052 4792 4563 4.12E-36
BjuB007698 MYB111 B07 15 16 14 39 47 92 1.79E-08
BjuB004115 TT8 B08 7 9 11 43 52 65 1.26E-12
Bol012528 MYB90 (PAP2) C06 6 9 12 111 89 99 1.01E-20

表2

2种六倍体花瓣中类胡萝卜素合成基因的表达量"

基因号
Gene ID
基因名称
Gene name
基因位置Location 基因表达量(FPKM) Gene expression value (FPKM) P-adj值
P-adj value
绿1
Green 1
绿2
Green 2
绿3
Green 3
紫1
Purple 1
紫2
Purple 2
紫3
Purple 3
BjuB042707 Z-ISO B04* 1 2 1 70 51 51 1.87E-13
BjuB029531 NCED5 B04 0 0 0 28 38 22 1.20E-09
BjuB028062 CRTISO2 B04* 0 0 0 543 646 552 2.79E-24
BjuB013608 CCD4 B05 75 61 100 16 23 8 9.48E-05
BjuB045962 LUT2 B08 299 769 779 203 204 153 8.35E-05
Bol008194 LCYb C01 204 628 458 105 123 65 9.32E-06
Bol042254 BCH1 C07 3136 2823 3381 5046 5954 4881 7.38E-09
[1] Van De Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet, 2017, 18: 411-424.
doi: 10.1038/nrg.2017.26 pmid: 28502977
[2] Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity, 2013, 110: 99-104.
doi: 10.1038/hdy.2012.79 pmid: 23149459
[3] Gonzalez A, Zhao M, Leavitt J M, Lloyd A M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J, 2008, 53: 814-827.
doi: 10.1111/tpj.2008.53.issue-5
[4] Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J, 2008, 54: 733-749.
doi: 10.1111/j.1365-313X.2008.03447.x
[5] Zhang Y, Butelli E, Martin C. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol, 2014, 19: 81-90.
doi: 10.1016/j.pbi.2014.05.011 pmid: 24907528
[6] 宋建辉, 郭长奎, 石敏. 植物花青素生物合成及调控. 分子植物育种, 2021, 19: 3612-3620.
Song J H, Guo C K, Shi M. Anthocyanin biosynthesis and regulation in plants. Mol Plant Breed, 2021, 19: 3612-3620 (in Chinese with English abstract).
[7] Albert N W, Griffiths A G, Cousins G R, Verry I M, Williams W M. Anthocyanin leaf markings are regulated by a family of R2R3-MYB genes in the genus Trifolium. New Phytol, 2015, 205: 882-893.
doi: 10.1111/nph.13100 pmid: 25329638
[8] Albert N W, Lewis D H, Zhang H, Schwinn K E, Jameson P E, Davies K M. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J, 2011, 65: 771-784.
doi: 10.1111/tpj.2011.65.issue-5
[9] Zhao L, Gao L, Wang H, Chen X, Wang Y, Yang H, Wei C, Wan X, Xia T. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Funct Integr Genomics, 2013, 13: 75-98.
doi: 10.1007/s10142-012-0301-4
[10] 王紫璇, 李佳佳, 于旭东, 蔡泽坪, 罗佳佳, 徐芷蕙. 高等植物类胡萝卜素生物合成研究进展. 分子植物育种, 2021, 19: 2627-2637.
Wang Z X, Li J J, Yu X D, Cai Z P, Luo J J, Xu Z H. Research progress in carotenoid biosynthesis in higher plants. Mol Plant Breed, 2021, 19: 2627-2637 (in Chinese with English abstract).
[11] 樊宝莲, 王晓云. 转录因子调控植物类胡萝卜素合成途径的研究进展. 分子植物育种, 2021, 19: 4401-4408.
Fan B L, Wang X Y. Research progress in regulation of carotenoid biosynthesis by transcriptional factors in plants. Mol Plant Breed, 2021, 19: 4401-4408 (in Chinese with English abstract).
[12] Ruiz-Sola M A, Rodriguez-Concepcion M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book, 2012, 10: e0158.
doi: 10.1199/tab.0158
[13] Zhang B, Liu C, Wang Y, Yao X, Wang F, Wu J, King G J, Liu K. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4gene converts flower colour from white to yellow in Brassica species. New Phytol, 2015, 206: 1513-1526.
doi: 10.1111/nph.13335 pmid: 25690717
[14] Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol, 2006, 142: 1193-1201.
pmid: 16980560
[15] Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z. Brassica rapa genome sequencing project C. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035-1039.
doi: 10.1038/ng.919
[16] Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin I A, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang T J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King G J, Pires J C, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 5: 3930.
doi: 10.1038/ncomms4930
[17] Perumal S, Koh C S, Jin L, Buchwaldt M, Higgins E E, Zheng C, Sankoff D, Robinson S J, Kagale S, Navabi Z K, Tang L, Horner K N, He Z, Bancroft I, Chalhoub B, Sharpe A G, Parkin I A P. A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. Nat Plants, 2020, 6: 929-941.
doi: 10.1038/s41477-020-0735-y
[18] Parkin I A, Koh C, Tang H, Robinson S J, Kagale S, Clarke W E, Town C D, Nixon J, Krishnakumar V, Bidwell S L, Denoeud F, Belcram H, Links M G, Just J, Clarke C, Bender T, Huebert T, Mason A S, Pires J C, Barker G, Moore J, Walley P G, Manoli S, Batley J, Edwards D, Nelson M N, Wang X, Paterson A H, King G, Bancroft I, Chalhoub B, Sharpe A G. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol, 2014, 15: R77.
doi: 10.1186/gb-2014-15-6-r77
[19] Guo N, Cheng F, Wu J, Liu B, Zheng S, Liang J, Wang X. Anthocyanin biosynthetic genes in Brassica rapa. BMC Genomics, 2014, 15: 426.
doi: 10.1186/1471-2164-15-426
[20] Mushtaq M A, Pan Q, Chen D, Zhang Q, Ge X, Li Z. Comparative leaves transcriptome analysis emphasizing on accumulation of anthocyanins in Brassica: molecular regulation and potential interaction with photosynthesis. Front Plant Sci, 2016, 7: 311.
[21] Chen D, Liu Y, Yin S, Qiu J, Jin Q, King G J, Wang J, Ge X, Li Z. Alternatively spliced BnaPAP2.A7 isoforms play opposing roles in anthocyanin biosynthesis of Brassica napus L. Front Plant Sci, 2020, 11: 983.
doi: 10.3389/fpls.2020.00983
[22] Heng S, Cheng Q, Zhang T, Liu X, Huang H, Yao P, Liu Z, Wan Z, Fu T. Fine-mapping of the BjPur gene for purple leaf color in Brassica juncea. Theor Appl Genet, 2020, 133: 2989-3000.
doi: 10.1007/s00122-020-03634-9
[23] He Q, Wu J Q, Xue Y H, Zhao W B, Li R, Zhang L G. The novel gene BrMYB2, located on chromosome A07, with a short intron 1 controls the purple-head trait of Chinese cabbage (Brassica rapa L.). Hortic Res, 2020, 7: 97.
doi: 10.1038/s41438-020-0319-z
[24] Yan C H, An G H, Zhu T, Zhang W Y, Zhang L, Peng L Y, Chen J J, Kuang H H. Independent activation of the BoMYB2 gene leading to purple traits in Brassica oleracea. Theor Appl Genets, 2019, 132: 895-906.
[25] 谭晨. 甘蓝型油菜中基因表达的剂量效应及甘蓝-黑芥附加系的创建. 华中农业大学博士学位论文, 湖北武汉, 2017.
Tan C. The Dose-effect of Gene Expression in Brassica napus and the Establishment of Brassica napus-B. nigra Addition Lines. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract).
[26] Schelfhout C J, Snowdon R, Cowling W A, Wroth J M. A PCR based B-genome-specific marker in Brassica species. Theor Appl Genets, 2004, 109: 917-921.
[27] Alix K, Joets J, Ryder C D, Moore J, Barker G C, Bailey J P, King G J, Heslop-Harrison J S. The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J, 2008, 56: 1030-1044.
doi: 10.1111/tpj.2008.56.issue-6
[28] Xiong Z, Pires J C. Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics, 2011, 187: 37-49.
doi: 10.1534/genetics.110.122473
[29] Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. EMBnet J, 2011, 17: 10-12.
[30] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
[31] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol, 2013, 14: R36.
doi: 10.1186/gb-2013-14-4-r36
[32] Anders S, Pyl P T, Huber W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics, 2015, 31: 166-169
doi: 10.1093/bioinformatics/btu638 pmid: 25260700
[33] Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667.
doi: 10.1038/nprot.2016.095 pmid: 27560171
[34] Yoo M J, Liu X, Pires J C, Soltis P S, Soltis D E. Nonadditive gene expression in polyploids. Annu Rev Genet, 2014, 48: 485-517.
doi: 10.1146/genet.2014.48.issue-1
[35] Song Q, Chen Z J. Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol, 2015, 24: 101-109.
doi: 10.1016/j.pbi.2015.02.007 pmid: 25765928
[36] Birchler J A. Aneuploidy in plants and flies: the origin of studies of genomic imbalance. Semin Cell Dev Biol, 2013, 24: 315-319.
doi: 10.1016/j.semcdb.2013.02.004 pmid: 23422884
[37] Birchler J A, Veitia R A. The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell, 2007, 19: 395-402.
doi: 10.1105/tpc.106.049338 pmid: 17293565
[38] 李群睿. 玉米类胡萝卜素异构酶和番茄红素ε-环化酶基因的克隆与鉴定. 东北师范大学博士学位论文,吉林长春, 2010.
Li Q R. Cloning and Identification of Genes Coding Carotenoid Isomerase and Lycopene ε-cyclase in Corn. PhD Dissertation of Northeast Normal University Library, Changchun, Jilin, China, 2010 (in Chinese with English abstract).
[1] 李红艳, 李洁雅, 李响, 叶广继, 周云, 王舰. 过表达LrAN2基因对马铃薯中花青素和糖苷生物碱含量的影响[J]. 作物学报, 2023, 49(4): 988-995.
[2] 赵冬兰, 赵凌霄, 刘洋, 张安, 戴习彬, 周志林, 曹清河. 基于RNA-seq的甘薯芽变株系类胡萝卜素基因代谢差异分析[J]. 作物学报, 2023, 49(12): 3239-3249.
[3] 黄婷苗, 詹昕, 陆乃昆, 乔月静, 陈杰, 杨珍平, 高志强. 叶喷有机硒对黑糯玉米硒吸收及籽粒花青素和铁锰铜锌的影响[J]. 作物学报, 2023, 49(10): 2845-2853.
[4] 李洁雅, 李红艳, 叶广继, 苏旺, 孙海宏, 王舰. 马铃薯储藏期花青素变化及合成相关基因表达分析[J]. 作物学报, 2022, 48(7): 1669-1682.
[5] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[6] 马超, 冯雅岚, 吴姗薇, 张均, 郭彬彬, 熊瑛, 李春霞, 李友军. 鼓粒期遮光对黑绿豆种皮花青素积累及相关基因表达特性的影响[J]. 作物学报, 2022, 48(11): 2826-2839.
[7] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[8] 易秋香,刘英,常存,钟瑞森. 基于光谱指数和偏最小二乘的棉花类胡萝卜素/叶绿素a比值估算[J]. 作物学报, 2020, 46(8): 1266-1274.
[9] 申状状,李昱樱,荣二花,吴玉香. 陆地棉和野生斯特提棉种间异源六倍体的合成与性状鉴定[J]. 作物学报, 2019, 45(4): 628-634.
[10] 岳芳,汪雷,陈燕桂,忻晓霞,李勤菲,梅家琴,熊志勇,钱伟. 利用异源六倍体(A rA rA nA nC nC n)与甘蓝种间杂交合成甘蓝型油菜的新方法[J]. 作物学报, 2019, 45(2): 188-195.
[11] 周萍萍,颜红海,彭远英. 基于高通量GBS-SNP标记的栽培燕麦六倍体起源研究[J]. 作物学报, 2019, 45(10): 1604-1612.
[12] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
[13] 周天山,王新超,余有本,肖瑶,钱文俊,肖斌,杨亚军. 紫芽茶树类黄酮生物合成关键酶基因表达与总儿茶素、花青素含量相关性分析[J]. 作物学报, 2016, 42(04): 525-531 .
[14] 刘敏轩,陆平. 中国谷子育成品种维生素E含量分布规律及其与主要农艺性状和类胡萝卜素的相关性分析[J]. 作物学报, 2013, 39(03): 398-408.
[15] 王涛,袁守江,尹亮,赵金凤,万建民,李学勇. 水稻DUS测试标准品种丛矮2号矮化多分蘖表型的遗传基础[J]. 作物学报, 2012, 38(10): 1766-1774.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .