作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2913-2922.doi: 10.3724/SP.J.1006.2023.33002
曹枭雄1,2(), 刘伊凡1,2, 周玉强2, 王婧2, 吴宇锦2, 王红武2, 李坤2, 刘小刚2, 黄长玲2, 刘志芳2, 郭晋杰1,*(), 胡小娇2,*()
CAO Xiao-Xiong1,2(), LIU Yi-Fan1,2, ZHOU Yu-Qiang2, WANG Jing2, WU Yu-Jin2, WANG Hong-Wu2, LI Kun2, LIU Xiao-Gang2, HUANG Chang-Ling2, LIU Zhi-Fang2, GUO Jin-Jie1,*(), HU Xiao-Jiao2,*()
摘要:
我们在自然群体中发现了一个玉米雄性不育突变体(male sterile mutant), 命名为ms20s1。该突变体雄花育性彻底丧失, 花药干瘪皱缩, 没有花粉形成。细胞学分析发现, 与野生型相比, ms20s1突变体花药在S11期表现出明显的药室收缩, 绒毡层细胞肿胀, 小孢子破裂的表型, 表明ms20s1突变体绒毡层细胞程序性死亡出现异常, 且花粉败育。遗传分析表明该不育性状受单个隐性核基因控制。为克隆目标基因, 以ms20s1为母本分别与不同自交系杂交构建F2定位群体, 利用靶向测序技术(GBTS)分析群体基因型, 将基因定位于7号染色体124.95~128.47 Mb之间, 进一步精细定位将该区间缩小到0.68 Mb。生物信息学分析发现, 该区间存在一个已知基因ZmMs7。ZmMs7基因编码PHD-finger转录因子, 在绒毡层发育和花粉外壁的形成过程中发挥重要作用。等位测验分析发现ms20s1为ZmMs7基因的等位突变体。基因测序结果表明ms20s1突变体在外显子区存在多处序列变异, 与所报道的ZmMs7基因已知突变体ms7-6007和ms7gl的突变方式不同, 证明ms20s1是一个新的ZmMs7基因等位突变体。突变体ms20s1的发现与鉴定为探讨玉米核雄性不育的分子机制以及育种应用提供了新的材料。
[1] |
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
doi: 10.1126/science.1183700 pmid: 20150489 |
[2] |
Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: S1674-2052(19)30020-6 pmid: 30690174 |
[3] |
Chen L, Liu Y G. Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 2014, 65: 579-606.
doi: 10.1146/annurev-arplant-050213-040119 pmid: 24313845 |
[4] |
Williams M E. Genetic engineering for pollination control. Trends Biotechnol, 1995, 13: 344-349.
doi: 10.1016/S0167-7799(00)88979-9 |
[5] |
Wu Y Z, Fox T W, Trimnell M R, Wang L J, Xu R J, Cigan A M, Huffman G A, Garnaat C W, Hershey H, Albertsen M C. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2016, 14: 1046-1054.
doi: 10.1111/pbi.12477 pmid: 26442654 |
[6] |
Zhang D B, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38: 379-390.
doi: 10.1016/j.jgg.2011.08.001 pmid: 21930097 |
[7] |
Zhang D B, Wilson Z A. Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353.
doi: 10.1007/s11434-009-0348-3 |
[8] |
Scott R J, Spielman M, Dickinson H G. Stamen structure and function. Plant Cell, 2004, 16: S46-S60.
doi: 10.1105/tpc.017012 |
[9] |
Wang D, Skibbe D S, Walbot V. Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. Sex Plant Reprod, 2011, 24: 297-306.
doi: 10.1007/s00497-011-0167-y |
[10] |
Stieglitz H, Stern H. Regulation of beta-1,3-glucanase activity in developing anthers of Lilium. Dev Biol, 1973, 34: 169-173.
pmid: 4787601 |
[11] |
Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol, 2011, 62: 437-460.
doi: 10.1146/annurev-arplant-042809-112312 pmid: 21275644 |
[12] |
Hernandez-Pinzon I, Ross J H E, Barnes K A, Damant A P, Murphy D J. Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Planta, 1999, 208: 588-598.
doi: 10.1007/s004250050597 |
[13] |
Bih F Y, Wu S S, Ratnayake C, Walling L L, Nothnagel E A, Huang A H C. The predominant protein on the surface of maize pollen is an endoxylanase synthesized by a tapetum mRNA with a long 5' leader. J Biol Chem, 1999, 274: 22884-22894.
doi: 10.1074/jbc.274.32.22884 pmid: 10428875 |
[14] |
Liu L, Fan X D. Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. Plant Mol Biol, 2013, 83: 165-175.
doi: 10.1007/s11103-013-0085-5 |
[15] |
Phan H A, Iacuone S, Li S F, Parish R W. The MYB80 Transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell, 2011, 23: 2209-2224.
doi: 10.1105/tpc.110.082651 |
[16] |
Cui Y, Zhao Q, Xie H T, Wong W S, Wang X F, Gao C J, Ding Y, Tan Y Q, Ueda T, Zhang Y, Jiang L W. MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated rab7 activation regulates tapetal programmed cell death and pollen development. Plant Physiol, 2017, 173: 206-218.
doi: 10.1104/pp.16.00988 pmid: 27799422 |
[17] |
Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell, 2009, 21: 1453-1472.
doi: 10.1105/tpc.108.062935 |
[18] |
Skibbe D S, Wang X J, Borsuk L A, Ashlock D A, Nettleton D, Schnable P S. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L.occurs via programmed cell death. J Genet Genomics, 2008, 35: 603-616.
doi: 10.1016/S1673-8527(08)60081-8 pmid: 18937917 |
[19] |
Zhao D Z, Wang G F, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002, 16: 2021-2031.
doi: 10.1101/gad.997902 |
[20] |
Fu Z Z, Yu J, Cheng X W, Zong X, Xu J, Chen M J, Li Z Y, Zhang D B, Liang W Q. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell, 2014, 26: 1512-1524.
doi: 10.1105/tpc.114.123745 |
[21] |
Moon J, Skibbe D, Timofejeva L, Wang C J R, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76: 592-602.
doi: 10.1111/tpj.2013.76.issue-4 |
[22] |
Guo Z F, Wang H W, Tao J J, Ren Y H, Xu C, Wu K S, Zou C, Zhang J N, Xu Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37.
doi: 10.1007/s11032-019-0940-4 |
[23] |
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30: 174-178.
doi: 10.1038/nbt.2095 pmid: 22267009 |
[24] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[25] |
Han Y J, Hu M J, Ma X X, Yan G, Wang C Y, Jiang S Q, Lai J S, Zhang M. Exploring key developmental phases and phase- specific genes across the entirety of anther development in maize. J Integr Plant Biol, 2022, 64: 1394-1410.
doi: 10.1111/jipb.v64.7 |
[26] |
An X L, Ba B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K, Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C, Li J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499-23509.
doi: 10.1073/pnas.2010255117 |
[27] |
Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459-471.
doi: 10.1111/pbi.2018.16.issue-2 |
[28] |
Halbach T, Scheer N, Werr W. Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Res, 2000, 28: 3542-3550.
doi: 10.1093/nar/28.18.3542 pmid: 10982874 |
[29] |
Yang C, Vizcay-Barrena G, Conner K, Wilson Z A. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell, 2007, 19: 3530-3548.
doi: 10.1105/tpc.107.054981 pmid: 18032629 |
[30] |
Ito T, Shinozaki K. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol, 2002, 43: 1285-1292.
doi: 10.1093/pcp/pcf154 |
[31] |
Gomez J F, Wilson Z A. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J, 2014, 12: 765-777.
doi: 10.1111/pbi.12181 pmid: 24684666 |
[32] | Morton C M, Lawson D L, Bedinger P. Morphological study of the maize male sterile mutant ms7. Maydica, 1989, 34: 239-245. |
[33] |
Li H, Yuan Z, Vizcay-Barrena G, Yang C Y, Liang W Q, Zong J, Wilson Z A, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760 |
[34] |
Yan X J, Ma L, Pang H Y, Wang P, Liu L, Cheng Y X, Cheng J K, Guo Y, Li Q Z. METHIONINE SYNTHASE1 is involved in chromatin silencing by maintaining DNA and histone methylation. Plant Physiol, 2019, 181: 249-261.
doi: 10.1104/pp.19.00528 pmid: 31331996 |
[1] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[2] | 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445. |
[3] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[4] | 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038. |
[5] | 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076. |
[6] | 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087. |
[7] | 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096. |
[8] | 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929. |
[9] | 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022. |
[10] | 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757. |
[11] | 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828. |
[12] | 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707. |
[13] | 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629. |
[14] | 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495. |
[15] | 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652. |
|