欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 2913-2922.doi: 10.3724/SP.J.1006.2023.33002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一个玉米ZmMs7复等位基因突变体的遗传分析与分子鉴定

曹枭雄1,2(), 刘伊凡1,2, 周玉强2, 王婧2, 吴宇锦2, 王红武2, 李坤2, 刘小刚2, 黄长玲2, 刘志芳2, 郭晋杰1,*(), 胡小娇2,*()   

  1. 1河北农业大学农学院 / 国家玉米改良中心河北分中心 / 华北作物改良与调控国家重点实验室, 河北保定 071001
    2中国农业科学院作物科学研究所 / 作物分子育种国家工程研究中心, 北京 100081
  • 收稿日期:2023-01-05 接受日期:2023-04-17 出版日期:2023-11-12 网络出版日期:2023-05-05
  • 通讯作者: 胡小娇, E-mail: huxiaojiao@caas.cn; 郭晋杰, E-mail: guojinjie512@163.com
  • 作者简介:E-mail: caoxx13@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1200802);中国农业科学院科技创新工程(CAAS-ZDRW202004);作物分子育种国家工程研究中心和河北省玉米现代种业科技创新团队项目(21326319D)

Genetic analysis and molecular identification of a multiple allele mutant of ZmMs7 gene in maize

CAO Xiao-Xiong1,2(), LIU Yi-Fan1,2, ZHOU Yu-Qiang2, WANG Jing2, WU Yu-Jin2, WANG Hong-Wu2, LI Kun2, LIU Xiao-Gang2, HUANG Chang-Ling2, LIU Zhi-Fang2, GUO Jin-Jie1,*(), HU Xiao-Jiao2,*()   

  1. 1College of Agronomy, Hebei Sub-center of National Maize Improvement Center of China / State Key Laboratory of North China Crop Improvement and Regulation / Hebei Agricultural University, Baoding 071001, Hebei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Research Center of Crop Molecular Breeding, Beijing 100081, China
  • Received:2023-01-05 Accepted:2023-04-17 Published:2023-11-12 Published online:2023-05-05
  • Supported by:
    National Key Research and Development Program of China(2022YFD1200802);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202004);National Engineering Research Center of Crop Molecular Breeding, and the Science and Technology Innovation Team of Maize Modern Seed Industry in Hebei(21326319D)

摘要:

我们在自然群体中发现了一个玉米雄性不育突变体(male sterile mutant), 命名为ms20s1。该突变体雄花育性彻底丧失, 花药干瘪皱缩, 没有花粉形成。细胞学分析发现, 与野生型相比, ms20s1突变体花药在S11期表现出明显的药室收缩, 绒毡层细胞肿胀, 小孢子破裂的表型, 表明ms20s1突变体绒毡层细胞程序性死亡出现异常, 且花粉败育。遗传分析表明该不育性状受单个隐性核基因控制。为克隆目标基因, 以ms20s1为母本分别与不同自交系杂交构建F2定位群体, 利用靶向测序技术(GBTS)分析群体基因型, 将基因定位于7号染色体124.95~128.47 Mb之间, 进一步精细定位将该区间缩小到0.68 Mb。生物信息学分析发现, 该区间存在一个已知基因ZmMs7ZmMs7基因编码PHD-finger转录因子, 在绒毡层发育和花粉外壁的形成过程中发挥重要作用。等位测验分析发现ms20s1ZmMs7基因的等位突变体。基因测序结果表明ms20s1突变体在外显子区存在多处序列变异, 与所报道的ZmMs7基因已知突变体ms7-6007ms7gl的突变方式不同, 证明ms20s1是一个新的ZmMs7基因等位突变体。突变体ms20s1的发现与鉴定为探讨玉米核雄性不育的分子机制以及育种应用提供了新的材料。

关键词: 玉米, 雄性不育, ms20s1, 基因定位, 等位突变

Abstract:

We identified a maize male sterile mutant in the natural population, designated as ms20s1. The mutant had complete male sterility and lacked pollen grains in the withered anthers. Cytological analysis showed that, compared with the wild type, the ms20s1 mutant exhibited shrinkage locule, swollen tapetum cells, and aborted microspore at S11 stage, indicating that the ms20s1 mutant had abnormal tapetal programmed cell death and complete pollen abortion. Genetic analysis revealed that the male sterility trait was controlled by a single recessive nuclear gene. To clone the target gene, we constructed the F2 populations by crossing ms20s1 with different inbred lines and analyzed the population genotype using genotyping by target sequencing (GBTS) technology. The gene was initially mapped to the 124.95-128.47 Mb region on chromosome 7, and the interval was narrowed down to 0.68 Mb after fine mapping. Bioinformatics analysis indicated that there was one known gene ZmMs7 in this region. The ZmMs7 gene encoded a PHD-finger transcription factor that played an important role in tapetum development and pollen wall formation. Allelism test demonstrated that ms20s1 was an allelic mutant of ZmMs7 gene. Gene sequencing results showed that the ms20s1 mutant had multiple sequence variants in the exon region, which were different from the reported mutants ms7-6007 and ms7gl, confirming ms20s1 was a new allelic mutant of ZmMs7. The discovery and identification of the ms20s1 mutant provide a new material for exploring the molecular mechanism and breeding application of maize genic male sterility.

Key words: maize, male sterility, ms20s1, gene mapping, allelic mutant

表1

本研究采用的PCR引物"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
用途
Usage
InD124 GCACTGAAGGCTTATTTCGTCG TTTTTGGTCGTTGCTGCTGAT 基因定位
Gene mapping
InD125 AGCAGGAACGAAAAGGCACT GCAAAACAGGACACGCATCA
InD127 CCCTGCTATGACGACTTTTTTTCT ACTCTTGGTTGTCCACCGTGC
InD128 CCCGCTCATTGCTCTGTTG CCAAGCGAGCAGGCACAT
InD130 GCTCTTGATTTGCGAGGTGGT GCTGTGAGTGTGATGCGTGTG
20q CTTGGACACCAAGCACTTCGTC CAGGGTGACCGTCTCGTACG 基因表达分析
Gene expression
Tubulin GTGTCCTGTCCACCCACTCTCT GGAACTCGTTCACATCAACGTTC
Ms7-P1 CAGAACAGAGCAGAGGAACCAT GGATAACCAAACGAAACACGAGCC 基因克隆
Gene cloning
Ms7-P2 GGAGAAACCGTCCAAAGGC AAACCTTCGTGGTAATCTTTGAC
Ms7-P3 GTCTTGGACACCAAGCACTTCGT TGCCATGGCGGCTATAGGAGTT 基因克隆/CAPS鉴定
Gene cloning/CAPS

图1

野生型和突变体ms20s1的表型比较 A: 散粉期野生型(WT)与突变体ms20s1植株的形态比较, 标尺为20 cm; B: 散粉期野生型(WT)与突变体ms20s1的雄穗比较, 标尺为20 cm; C、D: 野生型(C)与突变体ms20s1植株(D)的花药比较, 标尺为1 mm; E、F: 野生型(E)与突变体ms20s1 (F)被I2-KI染色后的花粉粒, 标尺为200 μm。"

表2

野生型和突变体重要农艺性状比较"

农艺性状
Agronomic trait
野生型
WT
突变体
ms20s1
株高Plant height (cm) 188.13±3.88 178.83±3.53*
穗位高Ear height (cm) 77.20±6.04 76.50±4.89
雄穗主轴长Total tassel length (cm) 41.01±2.29 38.48±2.21*
雄穗分枝数Tassel branch number 16.00±1.73 19.00±2.00*
穗上1叶长Leaf length-1 (cm) 88.33±3.94 90.65±3.27
穗上2叶长Leaf length-2 (cm) 82.26±3.03 84.32±4.25
穗上3叶长Leaf length-3 (cm) 75.17±3.20 74.75±3.80
穗上1叶宽Leaf width-1 (cm) 8.03±0.41 7.70±0.43
穗上2叶宽 Leaf width-2 (cm) 7.61±0.43 7.43±0.35
穗上3叶宽 Leaf width-3 (cm) 7.22±0.41 6.93±0.47
穗上1叶夹角Leaf angle-1 (°) 30.74±1.54 30.18±1.37
穗上2叶夹角Leaf angle-2 (°) 31.19±1.47 31.27±1.52
穗上3叶夹角Leaf angle-3 (°) 32.13±2.63 32.98±3.43

图2

WT和ms20s1突变体玉米花药(S8a~S11期)的横切面分析 E: 表皮层; En: 内皮层; ML: 中间层; Ta: 绒毡层; Msp: 小孢子; CMsp: 收缩的小孢子; Dy: 二分体; Tds: 四分体。标尺为50 μm。"

表3

F2群体表型分离的卡方检测"

群体
Population
总株数
Total number of plants
可育植株
Number of fertile plants
不育植株
Number of male sterile plants
期望比
Expected rate
χ2
F2 (ms20s1×B73) 379 285 94 3:1 0.0009
F2 (ms20s1×Mo17) 181 139 42 3:1 0.2228
F2 (ms20s1×C7-2) 990 769 221 3:1 3.6418

图3

SNP-index全基因组频率分布图"

图4

ms20s1的精细定位和ZmMs7基因的结构示意图 A: ms20s1的精细定位。Marker: 标记名称; N: 群体大小; Recombinant: 重组单株数; B: ZmMs7基因的结构示意图。灰色框代表5°非翻译区; 黑色框代表外显子区, 横线代表内含子区。"

图5

ms7-6007的杂合体与ms20s1突变体等位测验 A: 从左到右分别为ms20s1突变体、杂交后代中的可育植株、杂交后代中的不育植株、ms7-6007突变体的雄穗, 标尺为10 cm; B: 从左到右分别为ms20s1突变体、杂交后代中的可育植株、杂交后代中的不育植株、ms7-6007突变体的花药, 标尺为1 mm; C: 从左到右分别为ms20s1突变体、杂交后代中的可育植株、杂交后代中的不育植株、ms7-6007突变体被I2-KI染色后的花粉粒, 标尺为100 μm。"

表4

ms20s1与ms7-6007突变体等位测验"

父母本基因型
Parental genotype
表型统计Phenotypic statistics 总株数
Number of the total plants
χ2(1:1)
可育植株Fertile plants 不育植株Sterile plants
ms20s1×+/ms7-6007 96 100 196 0.0459
ms7-6007×+/ms20s1 151 145 296 0.0844

图6

基因型鉴定 A: CAPS标记PCR产物; B: SnaB I酶切产物, AA、Aa、aa分别代表纯合野生型、杂合野生型、纯合突变体。"

图7

ZmMs7基因在不同组织中的表达量变化"

[1] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
doi: 10.1126/science.1183700 pmid: 20150489
[2] Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: S1674-2052(19)30020-6 pmid: 30690174
[3] Chen L, Liu Y G. Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 2014, 65: 579-606.
doi: 10.1146/annurev-arplant-050213-040119 pmid: 24313845
[4] Williams M E. Genetic engineering for pollination control. Trends Biotechnol, 1995, 13: 344-349.
doi: 10.1016/S0167-7799(00)88979-9
[5] Wu Y Z, Fox T W, Trimnell M R, Wang L J, Xu R J, Cigan A M, Huffman G A, Garnaat C W, Hershey H, Albertsen M C. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2016, 14: 1046-1054.
doi: 10.1111/pbi.12477 pmid: 26442654
[6] Zhang D B, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38: 379-390.
doi: 10.1016/j.jgg.2011.08.001 pmid: 21930097
[7] Zhang D B, Wilson Z A. Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353.
doi: 10.1007/s11434-009-0348-3
[8] Scott R J, Spielman M, Dickinson H G. Stamen structure and function. Plant Cell, 2004, 16: S46-S60.
doi: 10.1105/tpc.017012
[9] Wang D, Skibbe D S, Walbot V. Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. Sex Plant Reprod, 2011, 24: 297-306.
doi: 10.1007/s00497-011-0167-y
[10] Stieglitz H, Stern H. Regulation of beta-1,3-glucanase activity in developing anthers of Lilium. Dev Biol, 1973, 34: 169-173.
pmid: 4787601
[11] Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol, 2011, 62: 437-460.
doi: 10.1146/annurev-arplant-042809-112312 pmid: 21275644
[12] Hernandez-Pinzon I, Ross J H E, Barnes K A, Damant A P, Murphy D J. Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Planta, 1999, 208: 588-598.
doi: 10.1007/s004250050597
[13] Bih F Y, Wu S S, Ratnayake C, Walling L L, Nothnagel E A, Huang A H C. The predominant protein on the surface of maize pollen is an endoxylanase synthesized by a tapetum mRNA with a long 5' leader. J Biol Chem, 1999, 274: 22884-22894.
doi: 10.1074/jbc.274.32.22884 pmid: 10428875
[14] Liu L, Fan X D. Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. Plant Mol Biol, 2013, 83: 165-175.
doi: 10.1007/s11103-013-0085-5
[15] Phan H A, Iacuone S, Li S F, Parish R W. The MYB80 Transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell, 2011, 23: 2209-2224.
doi: 10.1105/tpc.110.082651
[16] Cui Y, Zhao Q, Xie H T, Wong W S, Wang X F, Gao C J, Ding Y, Tan Y Q, Ueda T, Zhang Y, Jiang L W. MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated rab7 activation regulates tapetal programmed cell death and pollen development. Plant Physiol, 2017, 173: 206-218.
doi: 10.1104/pp.16.00988 pmid: 27799422
[17] Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell, 2009, 21: 1453-1472.
doi: 10.1105/tpc.108.062935
[18] Skibbe D S, Wang X J, Borsuk L A, Ashlock D A, Nettleton D, Schnable P S. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L.occurs via programmed cell death. J Genet Genomics, 2008, 35: 603-616.
doi: 10.1016/S1673-8527(08)60081-8 pmid: 18937917
[19] Zhao D Z, Wang G F, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002, 16: 2021-2031.
doi: 10.1101/gad.997902
[20] Fu Z Z, Yu J, Cheng X W, Zong X, Xu J, Chen M J, Li Z Y, Zhang D B, Liang W Q. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell, 2014, 26: 1512-1524.
doi: 10.1105/tpc.114.123745
[21] Moon J, Skibbe D, Timofejeva L, Wang C J R, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76: 592-602.
doi: 10.1111/tpj.2013.76.issue-4
[22] Guo Z F, Wang H W, Tao J J, Ren Y H, Xu C, Wu K S, Zou C, Zhang J N, Xu Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37.
doi: 10.1007/s11032-019-0940-4
[23] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30: 174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] Han Y J, Hu M J, Ma X X, Yan G, Wang C Y, Jiang S Q, Lai J S, Zhang M. Exploring key developmental phases and phase- specific genes across the entirety of anther development in maize. J Integr Plant Biol, 2022, 64: 1394-1410.
doi: 10.1111/jipb.v64.7
[26] An X L, Ba B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K, Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C, Li J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499-23509.
doi: 10.1073/pnas.2010255117
[27] Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459-471.
doi: 10.1111/pbi.2018.16.issue-2
[28] Halbach T, Scheer N, Werr W. Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Res, 2000, 28: 3542-3550.
doi: 10.1093/nar/28.18.3542 pmid: 10982874
[29] Yang C, Vizcay-Barrena G, Conner K, Wilson Z A. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell, 2007, 19: 3530-3548.
doi: 10.1105/tpc.107.054981 pmid: 18032629
[30] Ito T, Shinozaki K. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol, 2002, 43: 1285-1292.
doi: 10.1093/pcp/pcf154
[31] Gomez J F, Wilson Z A. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J, 2014, 12: 765-777.
doi: 10.1111/pbi.12181 pmid: 24684666
[32] Morton C M, Lawson D L, Bedinger P. Morphological study of the maize male sterile mutant ms7. Maydica, 1989, 34: 239-245.
[33] Li H, Yuan Z, Vizcay-Barrena G, Yang C Y, Liang W Q, Zong J, Wilson Z A, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760
[34] Yan X J, Ma L, Pang H Y, Wang P, Liu L, Cheng Y X, Cheng J K, Guo Y, Li Q Z. METHIONINE SYNTHASE1 is involved in chromatin silencing by maintaining DNA and histone methylation. Plant Physiol, 2019, 181: 249-261.
doi: 10.1104/pp.19.00528 pmid: 31331996
[1] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[2] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[3] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[4] 唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻OsGMS2基因的鉴定及其核不育系种子繁殖体系构建[J]. 作物学报, 2023, 49(8): 2025-2038.
[5] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[6] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[7] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[8] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[9] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[10] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[11] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[12] 林孝欣, 黄明江, 韦祎, 朱洪慧, 王子怡, 李忠成, 庄慧, 李彦羲, 李云峰, 陈锐. 水稻籽粒伸长突变体lgdp的鉴定与基因定位[J]. 作物学报, 2023, 49(6): 1699-1707.
[13] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[14] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[15] 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .