欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3176-3187.doi: 10.3724/SP.J.1006.2023.31008

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦转录因子基因TaPHR1参与调控每穗小穗数

张逸宁1,2(), 张艳菲2, 汪敏2, 王景一2, 李龙2, 李超男2, 杨德龙1,*(), 毛新国1,2,*(), 景蕊莲2   

  1. 1省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学生命科学技术学院, 甘肃兰州 730070
    2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业农村部农作物种质资源创新与利用重点开放实验室, 北京 100081
  • 收稿日期:2023-02-03 接受日期:2023-05-24 出版日期:2023-12-12 网络出版日期:2023-07-06
  • 通讯作者: * 杨德龙, E-mail: yangdl@gsau.edu.cn; 毛新国, E-mail: maoxinguo@caas.cn
  • 作者简介:E-mail: zyn18845111029@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0300707);甘肃省农业重点研发计划项目(21YF5NA089);甘肃省高等学校产业支撑计划项目(2022CYZC-44)

Transcription factor gene TaPHR1 involved in regulation spikelet number per spike in common wheat

ZHANG Yi-Ning1,2(), ZHANG Yan-Fei2, WANG Min2, WANG Jing-Yi2, LI Long2, LI Chao-Nan2, YANG De-Long1,*(), MAO Xin-Guo1,2,*(), JING Rui-Lian2   

  1. 1State Key Laboratory of Arid land Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Germplasm and Utilization, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2023-02-03 Accepted:2023-05-24 Published:2023-12-12 Published online:2023-07-06
  • Contact: * E-mail: yangdl@gsau.edu.cn;E-mail: maoxinguo@caas.cn
  • Supported by:
    National Key Research and Development Program of China(2018YFD0300707);Key Research and Development Program of Gansu Province, China(21YF5NA089);Industrial Support Plan of Colleges and Universities in Gansu Province, China(2022CYZC-44)

摘要:

利用水分高效基因资源创制新型小麦品种是应对气候变化和人口高速增长的有效途径。MYB (v-myb avian myeloblastosis viral oncogene homolog)是植物中最大的转录因子家族之一, 参与调控植物生长发育, 生物和非生物胁迫。本研究在TaPHR1-4ATaPHR1-4B中分别鉴定出19个和15个SNP, 基于这些多态性位点开发了分子标记。关联分析表明, Hap-4B-I是小穗数多的优异单倍型。通过创制两个回交导入系群体, 进一步证实Hap-4B-I有利于改善小麦穗部性状。TaPHR1的转录表达分析发现Hap-4B-I单倍型幼穗中TaPHR1的表达水平均高于Hap-4B-II单倍型。此外, TaPHR1在水稻中的异源表达导致穗分支变多, 也证实TaPHR1参与调控每穗小穗数。小麦育成品种的时空分布分析发现尽管Hap-4B-II在我国现代育成品种中占比最多, 但随小麦育种时间的推进, Hap-4B-I的占比在逐渐增多。总之, TaPHR1是小麦每穗小穗数的正调节因子。因此, 本研究开发的分子标记可作为小麦标记辅助选择和遗传改良的重要来源。

关键词: 小麦, MYB转录因子, 农艺性状, KASP标记, 关联分析

Abstract:

The utilization of water elite genetic resources to develop new wheat varieties is an effective approach to deal with the challenges of climate change and rapid population growth. The MYB (v-myb avian myeloblastosis viral oncogene homolog) transcription factors are one of the largest families of transcription factors in plants and are involved in plant growth and development and in the regulation of biotic and abiotic stresses. In this study, 19 SNPs and 15 SNPs were identified in TaPHR1-4A and TaPHR1-4B, respectively, and the molecular markers were developed based on these SNPs. Association analysis showed that Hap-4B-I was the elite haplotype with high Total number of spikelet per spike (NCS). Hap-4B-I was further confirmed to be beneficial for improving wheat spike traits by creating two backcross introgression population lines. Fluorescence quantitative polymerase chain reaction of TaPHR1 revealed that the relative expression level of TaPHR1 genes in young spikelets of Hap-4B-I haplotype was higher than that of Hap-4B-II haplotype. In addition, the heterologous expression of TaPHR1 in rice resulted in more panicle branches, which also confirmed the involvement of TaPHR1 in the regulation of NCS. The geographic and temporal distribution of wheat modern varieties revealed that although Hap-4B-II accounted for the largest proportion of modern varieties in China, the proportion of Hap-4B-I was gradually increasing as wheat breeding time progressed. In conclusion, TaPHR1 was a positive regulator of NCS in wheat. Therefore, the molecular markers developed in this study could be an important source of marker-assisted selection and genetic improvement in wheat.

Key words: wheat, MYB transcription factor, agronomic trait, KASP marker, association analysis

表1

试验中使用的引物及用途"

引物
Primer name
引物序列
Primer sequence (5′-3′)
用途
Purpose
Sub-F CTGGTACCCATGGAGCAGAAACTCATCTCTGAAGAGGATATGAGGAG
GTGTGATCTGAGACAG (Kpn I)
构建转基因水稻载体
Construction of transgenic rice vector
Sub-R CTACTAGTTCAGCGCTTCTCTTGCGG (Spe I)
qRT-F GGCAGAAAGCGAGTCTTCTGA 基因表达分析
Gene expression analysis
qRT-R GAACCATCATTAGTATTTGCAAGG
TaActin-qF CTCCCTCACAACAACAACCGC 小麦基因表达量对照
The control for wheat gene expression
TaActin-qR TACCAGGAACTTCCATACCAAC
OsTubulin-qF TGAGGACTGGTGCTTACCGC 水稻基因表达量对照
The control for rice gene expression
OsTubulin-qR GCACCATCAAACCTCAGGGA
TaPHR1-SNPA1-F1 GAAGGTGACCAAGTTCATGCTATACCAGTATATGCACTGGCAAAGAA 功能标记特异性引物
Specific primers for functional marks
TaPHR1-SNPA1-F2 GAAGGTCGGAGTCAACGGATTCCAGTATATGCACTGGCAAAGAG
TaPHR1-SNPA1-R ATATTAGCCAACCTTGTGAAGTTGTAATTTC
TaPHR1-SNPB1-F1 GAAGGTGACCAAGTTCATGCTTGAAGCGACGGTTTAAAACTGCG
TaPHR1-SNPB1-F2 GAAGGTCGGAGTCAACGGATTGATGAAGCGACGGTTTAAAACTGCA
TaPHR1-SNPB1-R CCTATACAAACGGTTTTTATCCCCTTTC

附图1

TaPHR1s氨基酸序列的比较。 黑色表示与一致序列完全匹配。红色矩形表示保守的MYB motif,黄色矩形表示保守的MYB-CC motif。"

图1

TaPHR1的核苷酸多态性和KASP标记的开发 图A、B、C分别为标注了TaPHR1-4A、TaPHR1-4B和TaPHR1-4D的核苷酸多态性位点; 图D: NP1中SNP-2171 bp的KASP标记(附表1), 其中蓝点代表FAM型等位基因C, 红点代表HEX型等位基因T; 黑点为对照。"

附图2

TaPHR1-4B基因组顺式作用元件分布图"

附图3

TaPHR1-4A的KASP标记的开发 对TaPHR1-4A上2398 bp处的SNP位点进行KASP检测(附表1)。其中蓝点代表FAM型等位基因T,红点代表HEX型等位基因C;黑点为对照"

附表1

NP1中2398 bp和2171 bp单核苷酸突变位点的Kasp检测数据"

序号
Accession No.
名称
Name
标记
Markers (bp)
基因型
Allele
1 Drysdale 2398 T
2 Salgemma 2398 T
3 百农160 Bainong 160 2398 T
4 博爱7023 Bo’ai 7023 2398 T
5 大荔1号 Dali 1 2398 T
6 大荔52 Dali 52 2398 T
7 泛麦8号 Fanmai 8 2398 T
8 丰产1号 Fengchan 1 2398 T
9 丰产3号 Fengchan 3 2398 T
10 丰优5号 Fenkang 13 2398 T
11 复壮30 Fuzhuang 30 2398 T
12 邯05-5092 Han 05-5092 2398 T
13 邯6172 Han 6172 2398 T
14 邯郸6050 Handan 6050 2398 T
15 衡216 Heng 216 2398 T
16 衡4399 Heng 4399 2398 T
17 衡5229 Heng 5229 2398 T
18 衡7228 Heng 7228 2398 T
19 衡95观26 Heng 95 guan 26 2398 T
20 衡观35 Hengguan 35 2398 T
21 衡麦2号 Hengmai 2 2398 T
22 衡水6404 Hengshui 6404 2398 T
23 衡优18 Hengyou 18 2398 T
24 淮麦18 Huaimai 18 2398 T
25 淮麦25 Huaimai 25 2398 T
26 淮沭10号 Huaishu 10 2398 T
27 兰天15号 Lantian 15 2398 T
28 良星99 Liangxing 99 2398 T
29 洛夫林10号 Lovrin 10 2398 T
30 洛旱11号 Luohan 11 2398 T
31 洛旱13号 Luohan 13 2398 T
32 洛旱2号 Luohan 2 2398 T
33 洛旱3号 Luohan 3 2398 T
34 洛旱6号 Luohan 6 2398 T
35 洛旱7号 Luohan 7 2398 T
36 洛旱8号 Luohan 8 2398 T
37 洛旱9号 Luohan 9 2398 T
38 洛麦21 Luomai 21 2398 T
39 洛麦23 Luomai 23 2398 T
40 洛农10号 Luonong 10 2398 T
41 洛阳8628 Luoyang 8628 2398 T
42 漯麦8号 Luomai 8 2398 T
43 漯麦9号 Luomai 9 2398 T
44 漯优7号 Luoyou 7 2398 T
45 青春1号 Qingchun 1 2398 T
46 青春2号 Qingchun 2 2398 T
47 清山843 Qingchun 843 2398 T
48 石4185 Shi 4185 2398 N
49 石家庄407 Shijiazhuang 407 2398 T
50 石家庄8号 Shijiazhuang 8 2398 T
51 石麦12号 Shimai 12 2398 T
52 石麦13 Shimai 13 2398 T
53 石麦15 Shimai 15 2398 T
54 石麦18 Shimai 18 2398 T
55 石麦19 Shimai 19 2398 T
56 徐州21 Xuzhou 21 2398 T
57 徐州6号 Xuzhou 6 2398 T
58 偃展一号 Yanzhan 1 2398 C
59 豫保1号 Yubao 1 2398 T
60 豫麦13号 Yumai 13 2398 T
61 豫麦18 Yumai 18 2398 T
62 豫麦29号 Yumai 29 2398 T
63 豫麦2号 Yumai 2 2398 T
64 豫麦38 Yumai 38 2398 T
65 豫麦47 Yumai 47 2398 T
66 豫麦48 Yumai 48 2398 T
67 豫麦8号 Yumai 8 2398 T
68 豫农416 Yunong 416 2398 T
69 豫农949 Yunong 949 2398 T
70 豫展4号 Yuzhan 4 2398 T
71 周麦16 Zhoumai 16 2398 T
72 周麦18 Zhoumai 18 2398 T
73 周麦22 Zhoumai 22 2398 T
74 周麦23 Zhoumai 23 2398 T
75 石特14 Shite 14 2398 T
76 石优17 Shiyou 17 2398 T
77 石优20 Shiyou 20 2398 T
78 皖麦19 Wanmai 19 2398 T
79 温麦6号(豫麦49) Wenmai 6 2398 T
80 西安8号 Xi'an 8 2398 T
81 西农1018 Xinong 1018 2398 T
82 西农189 Xinong 189 2398 T
83 西农219 Xinong 219 2398 T
84 西农318 Xinong 318 2398 T
85 西农6028 Xinong 6028 2398 T
86 西农688(西农213) Xinong 688 2398 T
87 西农797(西农928) Xinong 928 2398 T
88 西农9106 Xinong 9106 2398 T
89 鑫麦296 Xinmai 296 2398 T
90 济麦19 Jimai 19 2398 T
91 济麦20 Jimai 20 2398 T
92 济麦21 Jimai 21 2398 T
93 济麦22 Jimai 22 2398 T
94 济麦4号 Jimai 4 2398 T
95 济南10号 Jinan 10 2398 T
96 济南13 Jinan 13 2398 T
97 济南2号 Jinan 2 2398 T
98 济宁3号 Jinan 3 2398 T
99 邯4589 Han 4589 2398 T
100 衡136 Heng 136 2398 T
101 济麦6号 Jimai 6 2398 T
102 洛麦22 Luomai 22 2398 T
103 青麦7号 Qingmai 7 2398 T
104 西农1043 Xinong 1043 2398 T
105 红良4号 Hongliang 4 2398 T
106 晋麦16 Jinmai 16 2398 T
107 晋麦25 Jinmai 25 2398 T
108 运旱22-33 Yunhan 22-33 2398 T
109 安86中17 An 86 Zhong 17 2398 T
110 霸王鞭 Bawangbian 2398 T
111 白糙麦 Baicaomai 2398 T
112 白齐麦 Baiqimai 2398 T
113 白秃头 Baitutou 2398 T
114 宝临9号 Baolin 9 2398 T
115 宝麦5号 Baomai 5 2398 T
116 北京837 (CA837) Beijing 837 2398 T
117 北京8686 Beijing 8686 2398 T
118 北京8694 Beijing 8694 2398 T
119 北农2号 Beinong 2 2398 N
120 碧蚂1号 Bima 1 2398 T
121 沧麦6001 Cangmai 6001 2398 T
122 沧麦6005 Cangmai 6005 2398 T
123 沧州小麦 Cangzhouxiaomai 2398 T
124 昌乐5号 Changle 5 2398 T
125 长4640 Chang 4640 2398 T
126 长4738 Chang 4738 2398 T
127 长4853 Chang 4853 2398 T
128 长5259 Chang 5259 2398 T
129 长6154 Chang 6154 2398 T
130 长6359 Chang 6359 2398 T
131 长6452 Chang 6452 2398 T
132 长6794 Chang 6794 2398 T
133 长6878 Chang 6878 2398 T
134 长8744 Chang 8744 2398 T
135 长麦6135 Changmai 6135 2398 T
136 长武131 Changwu 131 2398 T
137 长武134 Changwu 134 2398 T
138 长武89(1)3-4 Changwu 89 (1) 3-4 2398 T
139 长治516 Changzhi 516 2398 T
140 长治620 Changzhi 620 2398 T
141 单R8043 Dan R8043 2398 T
142 单R8093 Dan R8093 2398 T
143 单R8108 Dan R8108 2398 T
144 单R8194 Dan R8194 2398 T
145 冬协2号 Dongxie 2 2398 T
146 丰抗13 Fengkang 13 2398 T
147 旱选10号 Hanxuan 10 2398 T
148 旱选11 Hanxuan 11 2398 N
149 旱选12 Hanxuan 12 2398 T
150 旱选1号 Hanxuan 1 2398 T
151 旱选2号 Hanxuan 2 2398 T
152 旱选3号 Hanxuan 3 2398 T
153 黑芒麦 Heimangmai 2398 T
154 红和尚 Hongheshang 2398 T
155 葫芦头 Hulutou 2398 T
156 花培6号 Huapei 6 2398 T
157 华北187 Huabei 187 2398 T
158 冀92-5203 Ji 92-5203 2398 T
159 冀麦10号 Jimai 10 2398 T
160 冀麦22 Jimai 22 2398 T
161 冀麦26 Jimai 26 2398 T
162 冀麦29 Jimai 29 2398 T
163 冀麦2号 Jimai 2 2398 T
164 冀麦30 Jimai 30 2398 T
165 冀麦32 Jimai 32 2398 T
166 冀麦38 Jimai 38 2398 T
167 冀麦41 Jimai 41 2398 T
168 冀麦6号 Jimai 6 2398 T
169 冀麦9号 Jimai 9 2398 T
170 冀麦一号 Jimai 1 2398 T
171 冀审5099 Jishen 5099 2398 C
172 鉴26 Jian 26 2398 T
173 金光 Jinguang 2398 T
174 晋2148-7 Jin 2148-7 2398 T
175 晋麦13 Jinmai 13 2398 T
176 晋麦17 Jinmai 17 2398 T
177 晋麦33 Jinmai 33 2398 T
178 晋麦39 Jinmai 39 2398 T
179 晋麦44 Jinmai 44 2398 T
180 晋麦47 Jinmai 47 2398 T
181 晋麦50 Jinmai 50 2398 T
182 晋麦51 Jinmai 51 2398 T
183 晋麦53 Jinmai 53 2398 T
184 晋麦54 Jinmai 54 2398 T
185 晋麦57 Jinmai 57 2398 T
186 晋麦63 Jinmai 63 2398 T
187 晋麦68 Jinmai 68 2398 T
188 晋麦72 Jinmai 72 2398 T
189 晋麦79 Jinmai 79 2398 T
190 晋麦91 Jinmai 91 2398 T
191 晋农207 Jinnong 207 2398 T
192 晋太102 Jintai 102 2398 T
193 晋太114 Jintai 114 2398 T
194 晋太1310 Jintai 1310 2398 T
195 晋太182 Jintai 182 2398 T
196 京411 Jing 411 2398 T
197 京东82东307 Jingdong 82 Dong 307 2398 T
198 京东83东65 Jingdong 83 Dong 65 2398 T
199 京冬8号 Jingdong 8 2398 T
200 京核8922 Jinghe 8922 2398 T
201 京花1号 Jinghua 1 2398 T
202 京农79-15 Jingnong 79-15 2398 N
203 京农80鉴107 Jingnong 80-107 2398 T
204 京农84-6786 Jingnong 84-6786 2398 N
205 京品11 Jingpin 11 2398 T
206 京品30 Jingpin 30 2398 T
207 京品3号 Jingpin 3 2398 T
208 京双16 Jingshuang 16 2398 T
209 京双2号 Jingshuang 2 2398 T
210 京选20 Jingxuan 20 2398 T
211 京选25 Jingxuan 25 2398 T
212 京延85鉴28 (83-5591) Jingyan 85 Jian 28 2398 T
213 科农199 Kenong 199 2398 T
214 科遗26 Keyi 26 2398 T
215 科遗29 Keyi 29 2398 T
216 临138 Lin 138 2398 T
217 临汾8050 Linfen 8050 2398 T
218 临丰3号(临旱536) Linfeng 3 2398 N
219 临丰518 Linfeng 518 2398 T
220 临旱5089 Linhan 5089 2398 T
221 临旱5367 Linhan 5367 2398 T
222 临旱6105 Linhan 6105 2398 T
223 临旱6号(临旱51329) Linhan 6 2398 T
224 临旱917 Linhan 917 2398 T
225 临旱935 Linhan 935 2398 T
226 临抗5108 Linkang 5108 2398 T
227 陇鉴196 Longjian 196 2398 T
228 陇鉴294 Longjian 294 2398 T
229 鲁德1号 Lude 1 2398 T
230 鲁麦14 Lumai 14 2398 T
231 鲁麦15 Lumai 15 2398 T
232 鲁麦17 Lumai 17 2398 T
233 鲁麦19 Lumai 19 2398 T
234 鲁麦23 Lumai 23 2398 T
235 鲁麦3号 Lumai 3 2398 T
236 鲁麦5号 Lumai 5 2398 T
237 鲁麦8号 Lumai 8 2398 T
238 轮抗7号 Lunkang 7 2398 T
239 轮选987 Lunxuan 897 2398 T
240 蚂蚱麦 Mazhamai 2398 T
241 铭贤169 Mingxian 169 2398 T
242 宁冬11 Ningdong 11 2398 T
243 农大135 Nongda 135 2398 T
244 农大146 Nongda 146 2398 T
245 农大155 Nongda 155 2398 T
246 农大183 Nongda 183 2398 T
247 农大20074 Nongda 20074 2398 T
248 农大311 Nongda 311 2398 T
249 农大3159 Nongda 3195 2398 T
250 农大33 Nongda 33 2398 T
251 农大36 Nongda 36 2398 T
252 农大81146 Nongda 81146 2398 T
253 平凉35 Pingliang 35 2398 T
254 平阳348 Pingyang 348 2398 T
255 秦麦3号 Qinmai 3 2398 T
256 秦麦7号 Qinmai 7 2398 T
257 庆丰1号 Qingfeng 1 2398 T
258 山农辐63 Shannongfu 63 2398 T
259 山农优麦2号 Shannongyoumai 2 2398 T
260 山优2号 Shanyou 2 2398 T
261 陕225-9 Shan225-9 2398 T
262 陕229 Shaan 229 2398 T
263 陕旱8675 Shaanhan 8675 2398 N
264 陕合6号 Shaanhe 6 2398 T
265 陕农1号 Shaannong 1 2398 T
266 陕农2号 Shaannong 2 2398 T
267 胜利麦 Triumph 2398 T
268 双丰收 Shuanfengshou 2398 T
269 舜麦1718 Shunmai 1718 2398 T
270 四棱红葫芦头 Silenghonghulutou 2398 T
271 太13606 Tai 13606 2398 T
272 太712 Tai 712 2398 N
273 太原566 Taiyuan 566 2398 T
274 太原633 Taiyuan 633 2398 N
275 泰山23 Taishan 23 2398 N
276 泰山24 Taishan 24 2398 T
277 渭麦4号 Weimai 4 2398 T
278 西峰16 Xifeng 16 2398 T
279 西峰20 Xifeng 20 2398 T
280 西峰9号 Xifeng 9 2398 N
281 小白麦(京856) Xiaobaimai 2398 T
282 小山8号 Xiaoshan 8 2398 T
283 新冬20号 Xindong 20 2398 T
284 新冬22号 Xindong 22 2398 T
285 烟农19 Yannong 19 2398 T
286 烟农21 Yannong 21 2398 N
287 延安15 Yanan 15 2398 T
288 燕大1817 Yanda 1817 2398 T
289 原冬3号 Yuandong 3 2398 T
290 原冬834 Yuandong 834 2398 T
291 原冬847 Yuandong 847 2398 T
292 原冬856 Yuandong 856 2398 T
293 运旱102 Yunhan 102 2398 T
294 运旱115 Yunhan 115 2398 T
295 运旱2028 Yunhan 2028 2398 T
296 运旱20410 Yunhan 20410 2398 N
297 运旱21-30 Yunhan 21-30 2398 T
298 运旱23-35 Yunhan 23-35 2398 T
299 运旱618 Yunhan 618 2398 T
300 运旱719 Yunhan 719 2398 T
301 运旱805 Yunhan 805 2398 T
302 早穗21 (EM1480) Zaosui 21 2398 T
303 早穗65 (EM1693) Zaosui 65 2398 T
304 早穗66 (EM1695) Zaosui 66 2398 T
305 早洋麦 Early Premium 2398 T
306 张冬29 Zhangdong 29 2398 T
307 郑丰9962 Zhengfeng 9962 2398 N
308 郑州24 Zhengzhou 24 2398 T
309 中7902 Zhong 7902 2398 T
310 中86Ⅰ-50455 Zhong 86I-50455 2398 T
311 中大86-鉴2 Zhongda 86-Jian 2 2398 T
312 中大91-品9 Zhongda 91-Pin 9 2398 T
313 中大92-鉴49 Zhongda 92-Jian 49 2398 T
314 中大92-品8 Zhongda 92-Pin 8 2398 T
315 中旱110 Zhonghan 110 2398 T
316 中麦175 Zhongmai 175 2398 T
317 中麦9号 Zhongmai 9 2398 T
318 中苏68 Zhongsu 68 2398 T
319 中引6号 Zhongyin 6 2398 T
320 中优9507 Zhongyou 9507 2398 T
321 中作60064 Zhongzuo 60064 2398 T
322 中作60115 Zhongzuo 60115 2398 T
323 紫秆白芒先 Ziganbaimangxian 2398 N

表2

利用一般线性模型分析NP1中TaPHR1-4B单倍型与农艺性状相关性"

年份
Year
地点
Site
环境
Environment
性状Trait (P-value)
每穗小穗数 NCS
2015 SY HS 0.03807*
2016 SY DS+HS 0.02435*
DS 0.00676**
CP WW 0.04046*
2017 SY DS+HS 0.01556*
DS 0.02899*
HS 0.00667**
CP DS 0.00231**
WW 0.00882**

图2

16种环境下TaPHR1-4B两种单倍型每穗小穗数比较 E: 环境, E1: 15-SY-WW; E2: 15-SY-WW-HS; E3: 15-SY-DS; E4: 15-SY-DS-HS; E5: 16-SY-WW; E6: 16-SY-WW-DS; E7: 16-SY-DS; E8: 16-SY-DS-HS; E9: 16-CP-WW; E10: 16-CP-DS; E11: 17-SY-WW; E12: 17-SY-WW-HS; E13: 17-SY-DS; E14: 17-SY-DS-HS; E15: 17-CP-WW; E16: 17-CP-DS。*、**、***分别表示在 0.05、0.01、0.001 概率水平差异显著。误差值: ±SE。"

图3

回交导入系群体中不同单倍型小麦每穗小穗数比较 回交导入系群体豫麦8-鲁麦14 (A, B)和洛阳8628-晋麦47 (C, D)中轮回亲本与导入系(L1~L5)的比较。*、**、***分别表示在0.05、0.01、0.001概率水平差异显著。误差值: ±SE。"

图4

TaPHR1在不同单倍型小麦种质中的表达水平 每个单倍型5份材料, 包括2个回交群体的亲本。误差值: ±SE。"

附图4

TaPHR1在不同转基因水稻株系中的相对表达量"

图5

TaPHR1过表达水稻农艺性状与野生型水稻的比较 转基因水稻穗部特征(A)、成熟植株(B)。"

图6

TaPHR1过表达水稻农艺性状与野生型水稻穗分支的比较 转基因水稻(OE-20、OE-26、OE-27)与野生型(WT)穗分枝比较。"

图7

TaPHR1-4B两种单倍型在我国十大麦区的地理分部 TaPHR1-4B两个单倍型在我国十大麦区农家品种(A)和育成品种(B)群体中的分布。I: 北方冬麦区; II: 黄淮冬麦区; III: 长江中下游冬麦区; IV: 西南冬麦区; V: 南方冬麦区; VI: 东北春麦区; VII: 北方春麦区; VIII: 西北春麦区; IX: 青-藏冬春麦区; X: 新疆冬春麦区。饼图的大小与种群中小麦品种的数量成正比。"

图8

TaPHR1-4B两种单倍型在中国小麦品种中频率随时间的变化"

附图5

TaPHR1过表达水稻农艺性状与野生型水稻的比较"

[1] Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought. Global Environ Chang: Human Policy Dimensions, 2009, 19: 292-305.
doi: 10.1016/j.gloenvcha.2008.10.009
[2] Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur, 2013, 5: 291-317.
doi: 10.1007/s12571-013-0263-y
[3] Slafer G A, Miralles D J. Fruiting efficiency in three bread wheat (Tritkum aestivum) cultivars released at different eras. Number of grains per spike and grain weight. J Agron Crop Sci, 1993, 170. DOI: 10.1111/j.1439-037X.1993.tb01083.x.
[4] Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020, 133: 1811-1823.
doi: 10.1007/s00122-020-03562-8 pmid: 32062676
[5] Li Y, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B, Xu H, Cui S, Zhang A, Fu X, Li J, Jing R, Liu X. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J, 2021, 19: 1141-1154.
doi: 10.1111/pbi.v19.6
[6] Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X. Correction to: identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2020, 133: 367.
doi: 10.1007/s00122-019-03467-1 pmid: 31664478
[7] Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol, 2014, 14: 158.
doi: 10.1186/1471-2229-14-158
[8] Piao W, Kim S H, Lee B D, An G, Sakuraba Y, Paek N C. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. J Exp Bot, 2019, 70: 2699-2715.
doi: 10.1093/jxb/erz095 pmid: 30825376
[9] 徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选, 作物学报, 2023, 49: 955-965.
doi: 10.3724/SP.J.1006.2023.24089
Xu Z Y, Yu X L, Zou L P, Zhao P J, Li W B, Geng M T, Ruan M B. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60. Acta Agron Sin, 2023, 49: 955-965. (in Chinese with English abstract)
[10] Koshiba T, Yamamoto N, Tobimatsu Y, Yamamura M, Suzuki S, Hattori T, Mukai M, Noda S, Shibata D, Sakamoto M, Umezawa T. MYB-mediated upregulation of lignin biosynthesis in Oryza sativa towards biomass refinery. Plant Biotechnol (Tokyo), 2017, 34: 7-15.
doi: 10.5511/plantbiotechnology.16.1201a pmid: 31275003
[11] Xiang X J, Sun L P, Yu P, Yang Z F, Zhang P P, Zhang Y X, Wu W X, Chen D B, Zhan X D, Khan R M, Abbas A, Cheng S H, Cao L Y. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. Theor Appl Genet, 2021, 134: 453-471.
doi: 10.1007/s00122-020-03706-w
[12] Katiyar A, Smita S, Lenka S K, Rajwanshi R, Chinnusamy V, Bansal K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.
doi: 10.1186/1471-2164-13-544 pmid: 23050870
[13] Wei Q, Chen R, Wei X, Liu Y, Zhao S, Yin X, Xie T. Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. BMC Genomics, 2020, 21: 792.
doi: 10.1186/s12864-020-07175-9
[14] Xie Z, Lee E, Lucas J R, Morohashi K, Li D, Murray J A, Sack F D, Grotewold E. Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. Plant Cell, 2010, 22: 2306-2321.
doi: 10.1105/tpc.110.074609
[15] Mandaokar A, Browse J. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol, 2009, 149: 851-862.
doi: 10.1104/pp.108.132597 pmid: 19091873
[16] Haga N, Kobayashi K, Suzuki T, Maeo K, Kubo M, Ohtani M, Mitsuda N, Demura T, Nakamura K, Jurgens G, Ito M. Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific genes in Arabidopsis. Plant Physiol, 2011, 157: 706-717.
doi: 10.1104/pp.111.180836
[17] McCarthy R L, Zhong R, Ye Z H. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in ArabidopsisArabidopsis. Plant Cell Physiol, 2009, 50: 1950-1964.
doi: 10.1093/pcp/pcp139 pmid: 19808805
[18] Kwon Y, Kim J H, Nguyen H N, Jikumaru Y, Kamiya Y, Hong S W, Lee H. A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation. J Exp Bot, 2013, 64: 3911-3922.
doi: 10.1093/jxb/ert223
[19] Li S F, Milliken O N, Pham H, Seyit R, Napoli R, Preston J, Koltunow A M, Parish R W. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell, 2009, 21: 72-89.
doi: 10.1105/tpc.108.063503
[20] Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song H R, Carre I A, Coupland G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell, 2002, 2: 629-641.
doi: 10.1016/s1534-5807(02)00170-3 pmid: 12015970
[21] Park M J, Seo P J, Park C M. CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis. Plant Signal Behav, 2012, 7: 1194-1196.
doi: 10.4161/psb.21300
[22] Marian C O, Bordoli S J, Goltz M, Santarella R A, Jackson L P, Danilevskaya O, Beckstette M, Meeley R, Bass H W. The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. Plant Physiol, 2003, 133: 1336-1350.
pmid: 14576282
[23] Yu Y T, Wu Z, Lu K, Bi C, Liang S, Wang X F, Zhang D P. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant Mol Biol, 2016, 90: 267-279.
doi: 10.1007/s11103-015-0411-1
[24] Deng M, Wang Y, Kuzma M, Chalifoux M, Tremblay L, Yang S, Ying J, Sample A, Wang H M, Griffiths R, Uchacz T, Tang X, Tian G, Joslin K, Dennis D, McCourt P, Huang Y, Wan J. Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages. Plant J, 2020, 104: 1535-1550.
doi: 10.1111/tpj.v104.6
[25] Shingote P R, Kawar P G, Pagariya M C, Muley A B, Babu K H. Isolation and functional validation of stress tolerant EaMYB18 gene and its comparative physio-biochemical analysis with transgenic tobacco plants overexpressing SoMYB18 and SsMYB18. 3 Biotech, 2020, 10: 225.
doi: 10.1007/s13205-020-02197-2
[26] Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant, 2021, 172: 847-868.
doi: 10.1111/ppl.13268 pmid: 33180329
[27] Li X, Jia J, Zhao P, Guo X, Chen S, Qi D, Cheng L, Liu G. LcMYB4, an unknown function transcription factor gene from sheepgrass, as a positive regulator of chilling and freezing tolerance in transgenic Arabidopsis. BMC Plant Biol, 2020, 20: 238.
doi: 10.1186/s12870-020-02427-y
[28] Tiwari P, Indoliya Y, Chauhan A S, Singh P, Singh P K, Singh P C, Srivastava S, Pande V, Chakrabarty D. Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. J Hazard Mater, 2020, 399: 122811.
doi: 10.1016/j.jhazmat.2020.122811
[29] Leng B, Wang X, Yuan F, Zhang H, Lu C, Chen M, Wang B. Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis. Plant Sci, 2021, 302: 110704.
doi: 10.1016/j.plantsci.2020.110704
[30] Agarwal P, Mitra M, Banerjee S, Roy S.MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Sci, 2020, 297: 110501.
doi: 10.1016/j.plantsci.2020.110501
[31] Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J, 2008, 53: 53-64.
pmid: 17971045
[32] Hoang M H, Nguyen X C, Lee K, Kwon Y S, Pham H T, Park H C, Yun D J, Lim C O, Chung W S.Phosphorylation by AtMPK6 is required for the biological function of AtMYB41 in Arabidopsis. Biochem Biophys Res Commun, 2012, 422: 181-186.
doi: 10.1016/j.bbrc.2012.04.137
[33] Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 2006, 580: 3498-3504.
doi: 10.1016/j.febslet.2006.05.027 pmid: 16730712
[34] Bari R, Pant B D, Stitt M, Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141: 988-999.
doi: 10.1104/pp.106.079707 pmid: 16679424
[35] Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 2010, 6: e1001102.
doi: 10.1371/journal.pgen.1001102
[36] Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev, 2001, 15: 2122-2133.
doi: 10.1101/gad.204401
[37] Wang J, Sun J, Miao J, Guo J, Shi Z, He M, Chen Y, Zhao X, Li B, Han F, Tong Y, Li Z. A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Ann Bot, 2013, 111: 1139-1153.
doi: 10.1093/aob/mct080
[38] Zheng X, Liu C, Qiao L, Zhao J, Han R, Wang X, Ge C, Zhang W, Zhang S, Qiao L, Zheng J, Hao C. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. J Exp Bot, 2020, 71: 5808-5822.
doi: 10.1093/jxb/eraa355 pmid: 32725154
[39] Miao L, Mao X, Wang J, Liu Z, Zhang B, Li W, Chang X, Reynolds M, Wang Z, Jing R. Elite haplotypes of a protein kinase gene TaSnRK2.3 associated with important agronomic traits in common wheat. Front Plant Sci, 2017, 8: 368.
[40] Hao C, Wang L, Ge H, Dong Y, Zhang X. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279.
doi: 10.1371/journal.pone.0017279
[41] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[42] Stewart C N, Via L E Jr. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993, 14: 748-750.
pmid: 8512694
[43] Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017, 91: 861-873.
doi: 10.1111/tpj.2017.91.issue-5
[44] Jeena G S, Kumar S, Shukla R K. Characterization of MYB35 regulated methyl jasmonate and wound responsive Geraniol 10-hydroxylase-1 gene from Bacopa monnieri. Planta, 2021, 253: 89.
doi: 10.1007/s00425-021-03614-3
[45] Keller T, Abbott J, Moritz T, Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell, 2006, 18: 598-611.
doi: 10.1105/tpc.105.038588
[46] Kang Y H, Kirik V, Hulskamp M, Nam K H, Hagely K, Lee M M, Schiefelbein J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. Plant Cell, 2009, 21: 1080-1094.
doi: 10.1105/tpc.108.063180
[47] Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146: 1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782
[48] 张辉. 不同年份小麦产量与主要农艺性状通径分析. 中国农学通报, 2016, 32(27): 24-28.
doi: 10.11924/j.issn.1000-6850.casb15120050
Zhang H. Path analysis of wheat yield and main agronomic traits under different years. Chin Agric Sci Bull, 2016, 32(27): 24-28. (in Chinese with English abstract)
[49] 田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 42: 1699-1705.
Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 42: 1699-1705. (in Chinese with English abstract)
[50] Li G, Xu B, Zhang Y, Xu Y, Khan N U, Xie J, Sun X, Guo H, Wu Z, Wang X, Zhang H, Li J, Xu J, Wang W, Zhang Z, Li Z. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnol J, 2022, 20: 158-167.
doi: 10.1111/pbi.v20.1
[51] Ren D, Cui Y, Hu H, Xu Q, Rao Y, Yu X, Zhang Y, Wang Y, Peng Y, Zeng D, Hu J, Zhang G, Gao Z, Zhu L, Chen G, Shen L, Zhang Q, Guo L, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J, 2019, 100: 813-824.
doi: 10.1111/tpj.v100.4
[52] Mu R L, Cao Y R, Liu Y F, Lei G, Zou H F, Liao Y, Wang H W, Zhang W K, Ma B, Du J Z, Yuan M, Zhang J S, Chen S Y. An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res, 2009, 19: 1291-1304.
doi: 10.1038/cr.2009.83
[53] Li Y F, Zeng X Q, Li Y, Wang L, Zhuang H, Wang Y, Tang J, Wang H L, Xiong M, Yang F Y, Yuan X Z, He G H. MULTI-FLORET SPIKELET 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice. Plant Physiol, 2020, 184: 988-1003.
doi: 10.1104/pp.20.00743
[54] Liu Y, He Z, Appels R, Xia X. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867
[1] 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31.
[2] 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88.
[3] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[4] 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551.
[5] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581.
[6] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[7] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143.
[8] 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209.
[9] 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224.
[10] 陈婷, 焦艳阳, 周鑫烨, 吴林坤, 张重义, 林煜, 林生, 林文雄. 不同土壤强化处理对连作太子参生长发育的影响及其效果评价[J]. 作物学报, 2023, 49(8): 2225-2239.
[11] 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258.
[12] 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287.
[13] 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307.
[14] 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905.
[15] 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .