作物学报 ›› 2023, Vol. 49 ›› Issue (12): 3176-3187.doi: 10.3724/SP.J.1006.2023.31008
张逸宁1,2(), 张艳菲2, 汪敏2, 王景一2, 李龙2, 李超男2, 杨德龙1,*(), 毛新国1,2,*(), 景蕊莲2
ZHANG Yi-Ning1,2(), ZHANG Yan-Fei2, WANG Min2, WANG Jing-Yi2, LI Long2, LI Chao-Nan2, YANG De-Long1,*(), MAO Xin-Guo1,2,*(), JING Rui-Lian2
摘要:
利用水分高效基因资源创制新型小麦品种是应对气候变化和人口高速增长的有效途径。MYB (v-myb avian myeloblastosis viral oncogene homolog)是植物中最大的转录因子家族之一, 参与调控植物生长发育, 生物和非生物胁迫。本研究在TaPHR1-4A和TaPHR1-4B中分别鉴定出19个和15个SNP, 基于这些多态性位点开发了分子标记。关联分析表明, Hap-4B-I是小穗数多的优异单倍型。通过创制两个回交导入系群体, 进一步证实Hap-4B-I有利于改善小麦穗部性状。TaPHR1的转录表达分析发现Hap-4B-I单倍型幼穗中TaPHR1的表达水平均高于Hap-4B-II单倍型。此外, TaPHR1在水稻中的异源表达导致穗分支变多, 也证实TaPHR1参与调控每穗小穗数。小麦育成品种的时空分布分析发现尽管Hap-4B-II在我国现代育成品种中占比最多, 但随小麦育种时间的推进, Hap-4B-I的占比在逐渐增多。总之, TaPHR1是小麦每穗小穗数的正调节因子。因此, 本研究开发的分子标记可作为小麦标记辅助选择和遗传改良的重要来源。
[1] |
Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought. Global Environ Chang: Human Policy Dimensions, 2009, 19: 292-305.
doi: 10.1016/j.gloenvcha.2008.10.009 |
[2] |
Shiferaw B, Smale M, Braun H J, Duveiller E, Reynolds M, Muricho G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur, 2013, 5: 291-317.
doi: 10.1007/s12571-013-0263-y |
[3] | Slafer G A, Miralles D J. Fruiting efficiency in three bread wheat (Tritkum aestivum) cultivars released at different eras. Number of grains per spike and grain weight. J Agron Crop Sci, 1993, 170. DOI: 10.1111/j.1439-037X.1993.tb01083.x. |
[4] |
Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020, 133: 1811-1823.
doi: 10.1007/s00122-020-03562-8 pmid: 32062676 |
[5] |
Li Y, Li L, Zhao M, Guo L, Guo X, Zhao D, Batool A, Dong B, Xu H, Cui S, Zhang A, Fu X, Li J, Jing R, Liu X. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat. Plant Biotechnol J, 2021, 19: 1141-1154.
doi: 10.1111/pbi.v19.6 |
[6] |
Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X. Correction to: identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet, 2020, 133: 367.
doi: 10.1007/s00122-019-03467-1 pmid: 31664478 |
[7] |
Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol, 2014, 14: 158.
doi: 10.1186/1471-2229-14-158 |
[8] |
Piao W, Kim S H, Lee B D, An G, Sakuraba Y, Paek N C. Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. J Exp Bot, 2019, 70: 2699-2715.
doi: 10.1093/jxb/erz095 pmid: 30825376 |
[9] |
徐子寅, 于晓玲, 邹良平, 赵平娟, 李文彬, 耿梦婷, 阮孟斌. 木薯MYB转录因子基因MeMYB60表达特征分析及其互作蛋白筛选, 作物学报, 2023, 49: 955-965.
doi: 10.3724/SP.J.1006.2023.24089 |
Xu Z Y, Yu X L, Zou L P, Zhao P J, Li W B, Geng M T, Ruan M B. Expression pattern analysis and interaction protein screening of cassava MYB transcription factor MeMYB60. Acta Agron Sin, 2023, 49: 955-965. (in Chinese with English abstract) | |
[10] |
Koshiba T, Yamamoto N, Tobimatsu Y, Yamamura M, Suzuki S, Hattori T, Mukai M, Noda S, Shibata D, Sakamoto M, Umezawa T. MYB-mediated upregulation of lignin biosynthesis in Oryza sativa towards biomass refinery. Plant Biotechnol (Tokyo), 2017, 34: 7-15.
doi: 10.5511/plantbiotechnology.16.1201a pmid: 31275003 |
[11] |
Xiang X J, Sun L P, Yu P, Yang Z F, Zhang P P, Zhang Y X, Wu W X, Chen D B, Zhan X D, Khan R M, Abbas A, Cheng S H, Cao L Y. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. Theor Appl Genet, 2021, 134: 453-471.
doi: 10.1007/s00122-020-03706-w |
[12] |
Katiyar A, Smita S, Lenka S K, Rajwanshi R, Chinnusamy V, Bansal K C. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics, 2012, 13: 544.
doi: 10.1186/1471-2164-13-544 pmid: 23050870 |
[13] |
Wei Q, Chen R, Wei X, Liu Y, Zhao S, Yin X, Xie T. Genome-wide identification of R2R3-MYB family in wheat and functional characteristics of the abiotic stress responsive gene TaMYB344. BMC Genomics, 2020, 21: 792.
doi: 10.1186/s12864-020-07175-9 |
[14] |
Xie Z, Lee E, Lucas J R, Morohashi K, Li D, Murray J A, Sack F D, Grotewold E. Regulation of cell proliferation in the stomatal lineage by the Arabidopsis MYB FOUR LIPS via direct targeting of core cell cycle genes. Plant Cell, 2010, 22: 2306-2321.
doi: 10.1105/tpc.110.074609 |
[15] |
Mandaokar A, Browse J. MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol, 2009, 149: 851-862.
doi: 10.1104/pp.108.132597 pmid: 19091873 |
[16] |
Haga N, Kobayashi K, Suzuki T, Maeo K, Kubo M, Ohtani M, Mitsuda N, Demura T, Nakamura K, Jurgens G, Ito M. Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific genes in Arabidopsis. Plant Physiol, 2011, 157: 706-717.
doi: 10.1104/pp.111.180836 |
[17] |
McCarthy R L, Zhong R, Ye Z H. MYB83 is a direct target of SND1 and acts redundantly with MYB46 in the regulation of secondary cell wall biosynthesis in ArabidopsisArabidopsis. Plant Cell Physiol, 2009, 50: 1950-1964.
doi: 10.1093/pcp/pcp139 pmid: 19808805 |
[18] |
Kwon Y, Kim J H, Nguyen H N, Jikumaru Y, Kamiya Y, Hong S W, Lee H. A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation. J Exp Bot, 2013, 64: 3911-3922.
doi: 10.1093/jxb/ert223 |
[19] |
Li S F, Milliken O N, Pham H, Seyit R, Napoli R, Preston J, Koltunow A M, Parish R W. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell, 2009, 21: 72-89.
doi: 10.1105/tpc.108.063503 |
[20] |
Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song H R, Carre I A, Coupland G. LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell, 2002, 2: 629-641.
doi: 10.1016/s1534-5807(02)00170-3 pmid: 12015970 |
[21] |
Park M J, Seo P J, Park C M. CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis. Plant Signal Behav, 2012, 7: 1194-1196.
doi: 10.4161/psb.21300 |
[22] |
Marian C O, Bordoli S J, Goltz M, Santarella R A, Jackson L P, Danilevskaya O, Beckstette M, Meeley R, Bass H W. The maize Single myb histone 1 gene, Smh1, belongs to a novel gene family and encodes a protein that binds telomere DNA repeats in vitro. Plant Physiol, 2003, 133: 1336-1350.
pmid: 14576282 |
[23] |
Yu Y T, Wu Z, Lu K, Bi C, Liang S, Wang X F, Zhang D P. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant Mol Biol, 2016, 90: 267-279.
doi: 10.1007/s11103-015-0411-1 |
[24] |
Deng M, Wang Y, Kuzma M, Chalifoux M, Tremblay L, Yang S, Ying J, Sample A, Wang H M, Griffiths R, Uchacz T, Tang X, Tian G, Joslin K, Dennis D, McCourt P, Huang Y, Wan J. Activation tagging identifies Arabidopsis transcription factor AtMYB68 for heat and drought tolerance at yield determining reproductive stages. Plant J, 2020, 104: 1535-1550.
doi: 10.1111/tpj.v104.6 |
[25] |
Shingote P R, Kawar P G, Pagariya M C, Muley A B, Babu K H. Isolation and functional validation of stress tolerant EaMYB18 gene and its comparative physio-biochemical analysis with transgenic tobacco plants overexpressing SoMYB18 and SsMYB18. 3 Biotech, 2020, 10: 225.
doi: 10.1007/s13205-020-02197-2 |
[26] |
Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiol Plant, 2021, 172: 847-868.
doi: 10.1111/ppl.13268 pmid: 33180329 |
[27] |
Li X, Jia J, Zhao P, Guo X, Chen S, Qi D, Cheng L, Liu G. LcMYB4, an unknown function transcription factor gene from sheepgrass, as a positive regulator of chilling and freezing tolerance in transgenic Arabidopsis. BMC Plant Biol, 2020, 20: 238.
doi: 10.1186/s12870-020-02427-y |
[28] |
Tiwari P, Indoliya Y, Chauhan A S, Singh P, Singh P K, Singh P C, Srivastava S, Pande V, Chakrabarty D. Auxin-salicylic acid cross-talk ameliorates OsMYB-R1 mediated defense towards heavy metal, drought and fungal stress. J Hazard Mater, 2020, 399: 122811.
doi: 10.1016/j.jhazmat.2020.122811 |
[29] |
Leng B, Wang X, Yuan F, Zhang H, Lu C, Chen M, Wang B. Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis. Plant Sci, 2021, 302: 110704.
doi: 10.1016/j.plantsci.2020.110704 |
[30] |
Agarwal P, Mitra M, Banerjee S, Roy S.MYB4 transcription factor, a member of R2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant Sci, 2020, 297: 110501.
doi: 10.1016/j.plantsci.2020.110501 |
[31] |
Cominelli E, Sala T, Calvi D, Gusmaroli G, Tonelli C. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J, 2008, 53: 53-64.
pmid: 17971045 |
[32] |
Hoang M H, Nguyen X C, Lee K, Kwon Y S, Pham H T, Park H C, Yun D J, Lim C O, Chung W S.Phosphorylation by AtMPK6 is required for the biological function of AtMYB41 in Arabidopsis. Biochem Biophys Res Commun, 2012, 422: 181-186.
doi: 10.1016/j.bbrc.2012.04.137 |
[33] |
Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 2006, 580: 3498-3504.
doi: 10.1016/j.febslet.2006.05.027 pmid: 16730712 |
[34] |
Bari R, Pant B D, Stitt M, Scheible W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006, 141: 988-999.
doi: 10.1104/pp.106.079707 pmid: 16679424 |
[35] |
Bustos R, Castrillo G, Linhares F, Puga M I, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet, 2010, 6: e1001102.
doi: 10.1371/journal.pgen.1001102 |
[36] |
Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev, 2001, 15: 2122-2133.
doi: 10.1101/gad.204401 |
[37] |
Wang J, Sun J, Miao J, Guo J, Shi Z, He M, Chen Y, Zhao X, Li B, Han F, Tong Y, Li Z. A phosphate starvation response regulator Ta-PHR1 is involved in phosphate signalling and increases grain yield in wheat. Ann Bot, 2013, 111: 1139-1153.
doi: 10.1093/aob/mct080 |
[38] |
Zheng X, Liu C, Qiao L, Zhao J, Han R, Wang X, Ge C, Zhang W, Zhang S, Qiao L, Zheng J, Hao C. The MYB transcription factor TaPHR3-A1 is involved in phosphate signaling and governs yield-related traits in bread wheat. J Exp Bot, 2020, 71: 5808-5822.
doi: 10.1093/jxb/eraa355 pmid: 32725154 |
[39] | Miao L, Mao X, Wang J, Liu Z, Zhang B, Li W, Chang X, Reynolds M, Wang Z, Jing R. Elite haplotypes of a protein kinase gene TaSnRK2.3 associated with important agronomic traits in common wheat. Front Plant Sci, 2017, 8: 368. |
[40] |
Hao C, Wang L, Ge H, Dong Y, Zhang X. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One, 2011, 6: e17279.
doi: 10.1371/journal.pone.0017279 |
[41] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[42] |
Stewart C N, Via L E Jr. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993, 14: 748-750.
pmid: 8512694 |
[43] |
Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017, 91: 861-873.
doi: 10.1111/tpj.2017.91.issue-5 |
[44] |
Jeena G S, Kumar S, Shukla R K. Characterization of MYB35 regulated methyl jasmonate and wound responsive Geraniol 10-hydroxylase-1 gene from Bacopa monnieri. Planta, 2021, 253: 89.
doi: 10.1007/s00425-021-03614-3 |
[45] |
Keller T, Abbott J, Moritz T, Doerner P. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell, 2006, 18: 598-611.
doi: 10.1105/tpc.105.038588 |
[46] |
Kang Y H, Kirik V, Hulskamp M, Nam K H, Hagely K, Lee M M, Schiefelbein J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. Plant Cell, 2009, 21: 1080-1094.
doi: 10.1105/tpc.108.063180 |
[47] |
Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol, 2008, 146: 1673-1686.
doi: 10.1104/pp.107.111443 pmid: 18263782 |
[48] |
张辉. 不同年份小麦产量与主要农艺性状通径分析. 中国农学通报, 2016, 32(27): 24-28.
doi: 10.11924/j.issn.1000-6850.casb15120050 |
Zhang H. Path analysis of wheat yield and main agronomic traits under different years. Chin Agric Sci Bull, 2016, 32(27): 24-28. (in Chinese with English abstract) | |
[49] | 田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 42: 1699-1705. |
Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 42: 1699-1705. (in Chinese with English abstract) | |
[50] |
Li G, Xu B, Zhang Y, Xu Y, Khan N U, Xie J, Sun X, Guo H, Wu Z, Wang X, Zhang H, Li J, Xu J, Wang W, Zhang Z, Li Z. RGN1 controls grain number and shapes panicle architecture in rice. Plant Biotechnol J, 2022, 20: 158-167.
doi: 10.1111/pbi.v20.1 |
[51] |
Ren D, Cui Y, Hu H, Xu Q, Rao Y, Yu X, Zhang Y, Wang Y, Peng Y, Zeng D, Hu J, Zhang G, Gao Z, Zhu L, Chen G, Shen L, Zhang Q, Guo L, Qian Q. AH2 encodes a MYB domain protein that determines hull fate and affects grain yield and quality in rice. Plant J, 2019, 100: 813-824.
doi: 10.1111/tpj.v100.4 |
[52] |
Mu R L, Cao Y R, Liu Y F, Lei G, Zou H F, Liao Y, Wang H W, Zhang W K, Ma B, Du J Z, Yuan M, Zhang J S, Chen S Y. An R2R3-type transcription factor gene AtMYB59 regulates root growth and cell cycle progression in Arabidopsis. Cell Res, 2009, 19: 1291-1304.
doi: 10.1038/cr.2009.83 |
[53] |
Li Y F, Zeng X Q, Li Y, Wang L, Zhuang H, Wang Y, Tang J, Wang H L, Xiong M, Yang F Y, Yuan X Z, He G H. MULTI-FLORET SPIKELET 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice. Plant Physiol, 2020, 184: 988-1003.
doi: 10.1104/pp.20.00743 |
[54] |
Liu Y, He Z, Appels R, Xia X. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867 |
[1] | 李俣佳, 许豪, 于士男, 唐建卫, 李巧云, 高艳, 郑继周, 董纯豪, 袁雨豪, 郑天存, 殷贵鸿. 小麦骨干亲本周8425B抗条锈病优异基因在其衍生品种中的遗传解析[J]. 作物学报, 2024, 50(1): 16-31. |
[2] | 王丽平, 王晓钰, 傅竞也, 王强. 玉米转录因子ZmMYB12提高植物抗旱性和低磷耐受性的功能鉴定[J]. 作物学报, 2024, 50(1): 76-88. |
[3] | 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343. |
[4] | 张丽华, 张经廷, 董志强, 侯万彬, 翟立超, 姚艳荣, 吕丽华, 赵一安, 贾秀领. 不同降水年型水分运筹对冬小麦产量及其构成的影响[J]. 作物学报, 2023, 49(9): 2539-2551. |
[5] | 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响[J]. 作物学报, 2023, 49(9): 2572-2581. |
[6] | 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330. |
[7] | 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析[J]. 作物学报, 2023, 49(8): 2133-2143. |
[8] | 杨晓慧, 王碧胜, 孙筱璐, 侯靳锦, 徐梦杰, 王志军, 房全孝. 冬小麦对水分胁迫响应的模型模拟与节水滴灌制度优化[J]. 作物学报, 2023, 49(8): 2196-2209. |
[9] | 李宇星, 马亮亮, 张月, 秦博雅, 张文静, 马尚宇, 黄正来, 樊永惠. 外源海藻糖对灌浆期高温胁迫下小麦旗叶生理特性和产量的影响[J]. 作物学报, 2023, 49(8): 2210-2224. |
[10] | 陈婷, 焦艳阳, 周鑫烨, 吴林坤, 张重义, 林煜, 林生, 林文雄. 不同土壤强化处理对连作太子参生长发育的影响及其效果评价[J]. 作物学报, 2023, 49(8): 2225-2239. |
[11] | 刘琼, 杨洪坤, 陈艳琦, 吴东明, 黄秀兰, 樊高琼. 施氮量对糯和非糯小麦原粮品质、酿酒品质及挥发性风味物质的影响[J]. 作物学报, 2023, 49(8): 2240-2258. |
[12] | 林芬芳, 陈星宇, 周维勋, 王倩, 张东彦. 基于堆栈稀疏自编码器的小麦赤霉病高光谱遥感检测[J]. 作物学报, 2023, 49(8): 2275-2287. |
[13] | 刘世洁, 杨习文, 马耕, 冯昊翔, 韩志栋, 韩潇杰, 张晓燕, 贺德先, 马冬云, 谢迎新, 王丽芳, 王晨阳. 灌水和施氮对冬小麦根系特征及氮素利用的影响[J]. 作物学报, 2023, 49(8): 2296-2307. |
[14] | 张振, 石玉, 张永丽, 于振文, 王西芝. 土壤水分含量对小麦耗水特性和旗叶/根系衰老特性的影响[J]. 作物学报, 2023, 49(7): 1895-1905. |
[15] | 张露露, 张学美, 牟文燕, 黄宁, 郭子糠, 罗一诺, 魏蕾, 孙利谦, 王星舒, 石美, 王朝辉. 我国主要麦区小麦籽粒锰含量: 品种与土壤因素的影响[J]. 作物学报, 2023, 49(7): 1906-1918. |
|